K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Gọi M là trung điểm BC, nên AM là trung tuyến => AM=1/2BC nên tam giác ABM cân, lại có B=600 nên tam giác ABM đều nên AB=AM=BM=1/2BC

5 tháng 10 2015

đề sai

vuông tại A là góc A=90 0 mà

12 tháng 9 2017

 Trước hết bạn cần biết bổ đề sau: " Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền " - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh 
Kẻ BH ⊥ AC tại H. 
Xét tam giác ABH có góc BHA = 90độ (cách kẻ) 
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ 
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ 
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1) 
Áp dụng định lý Py-ta-go ta có: 
AB² = BH² + AH² 
=> BH² = AB² - AH² (2) 
Xét tam giác BHC có góc BHC = 90độ (cách kẻ) 
=> Áp dụng định lý Py-ta-go ta có: 
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3) 
Thay (1) và (2) vào (3) ta có: 
BC² = (AB² - AH²) + AC² - AB.AC + AH² 
<=> BC² = AB² - AH² + AC² - AB.AC + AH 
<=> BC² = AB² + AC² - AB.AC 
Kết luận

a: góc B=90-60=30 độ

Xét ΔABC có góc C<góc B<góc A

nên AB<AC<BC

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

28 tháng 7 2023

may quá kịp giờ nộp bài tập về nhà cám ơn

11 tháng 7 2018

ai tích mình mình tích lại cho

9 tháng 5 2021

Để mình làm cho

xét tam giác ABD và tam giác EBD có

BD chung 

ABD=EBD( vì BD là phân giác )

BAD=BED=90 độ

suy ra tam giác ABD=tam giác EBD ( cạnh huyền - góc nhọn)

vậy tam giác ABD = tam giác EBD

b vì tam giác ABD =tam giác EBD ( cm câu a)

suy ra AB = EB ( 2 cạnh tương ứng)

suy ra tam giác ABE cân tại b

mà góc B = 60 độ

suy ra tam giác ABE đều

Vậy tam giác ABE đều

c từ từ mình đang nghĩ

23 tháng 3 2016

Ta có: <A+<B+<C=180

90+30+<C=180

<c=180-30-90=60

Xét ▲ABC và ▲MNP ta có:

<A=<M=90

<C=<P(=60)

Do đó ▲ABC đồng dạng ▲MNP(g-g)