K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

a: AD là phân giác

=>BD/CD=AB/AC=3/4

=>S ABD/S ACD=3/4

b: BC=căn 16^2+12^2=20cm

c: AD là phân giác

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

d: AH=12*16/20=192/20=9,6cm

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

20 tháng 10 2023

a: Đặt \(\dfrac{AB}{5}=\dfrac{AC}{12}=k\)

=>AB=5k; AC=12k

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(25k^2+144k^2=26^2\)

=>\(k^2=4\)

=>k=2

=>AB=10cm; AC=24cm

b: Xét tứ giác ABCD có

\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{BCD}+\widehat{ADC}=360^0-70^0=290^0\)

=>\(2\cdot\left(\widehat{ODC}+\widehat{OCD}\right)=290^0\)

=>\(\widehat{OCD}+\widehat{ODC}=145^0\)

Xét ΔOCD có \(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^0\)

=>\(\widehat{COD}=180^0-145^0=35^0\)

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Lời giải:

a) 

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)

b) 

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$

$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$

$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$

$\Rightarrow AD=15$ (cm)

$DC=AC-AD=40-15=25$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Hình vẽ: