K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔBAD có BA=BD và góc B=60 độ

nên ΔBAD đều

b: góc CAD=90-60=30 độ=góc C

=>ΔDAC cân tại D

 

13 tháng 4 2021

a) Ta có:

\(BA=BD\rightarrow\Delta BAD\)cân tại \(B\) \(\widehat{ABD}=\widehat{B}=60^o\)

b) Ta có: \(\Delta BAD\)đều

\(\rightarrow\widehat{BAD}=60^o\)

\(\rightarrow=\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=30^o\)

Lại có: \(\Delta ABC\)vuông tại \(A\rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)

\(\rightarrow\widehat{DAC}=\widehat{ACB}=\widehat{ACD}\)

\(\rightarrow\Delta ADC\)cân tại  \(D\)

c) Ta có: \(CA=CE\rightarrow\Delta CAE\)cân tại \(C\)

\(\rightarrow\widehat{EAC}=90^o-\frac{1}{2}\widehat{ACB}=90^o-\frac{1}{2}\widehat{ACB=75^o}\)

\(\rightarrow\widehat{DAE}=\widehat{CAE}-\widehat{CAD}=45^o\)

13 tháng 4 2021

đccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)