K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

\(AC=\sin B\cdot BC=\dfrac{1}{2}\cdot18=9\left(cm\right)\)

25 tháng 12 2021

a: \(BC=AC:\sin B=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

17 tháng 11 2021

\(AC=AB=5\left(cm\right)\)

Kẻ đường cao AH thì AH cũng là trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\cos B\cdot AB=\dfrac{\sqrt{3}}{2}\cdot5=\dfrac{5\sqrt{3}}{2}\\ \Rightarrow BC=2\cdot\dfrac{5\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

17 tháng 11 2021

Thank you bạn nha!!

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

9 tháng 10 2021

a),b) Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{12}{13}\\sinC=\dfrac{AB}{BC}=\dfrac{5}{13}\end{matrix}\right.\)

c) Ta có: \(sinB=\dfrac{12}{13}\Rightarrow\widehat{B}\approx67^0\)

\(sinC=\dfrac{5}{13}\Rightarrow\widehat{C}\approx23^0\)

 

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

11 tháng 8 2015

2/AB/AC=3/4 nên AB=3AC/4(1)

Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC

 

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

\(=2\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)