K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Ta có: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

b: Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM và CP là phân giác của góc ACM

Vì CP là phân giác của góc ACM

nên \(\widehat{ACM}=2\cdot\widehat{PCM}\)

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: CQ là phân giác của góc MCD

=>\(\widehat{MCD}=2\cdot\widehat{MCQ}\)

Ta có: \(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}\)

=>\(\widehat{DCA}=2\cdot\left(\widehat{MCQ}+\widehat{MCP}\right)\)

=>\(\widehat{DCA}=2\cdot\widehat{PCQ}\)

=>\(\widehat{PCQ}=\dfrac{sđ\stackrel\frown{AD}}{2}\left(1\right)\)

Xét ΔBEF có

BC là đường cao

BC là đường phân giác

Do đó: ΔBEF cân tại B

=>BE=BF

Xét ΔBEF có \(\dfrac{BA}{BE}=\dfrac{BD}{BF}\)

nên AD//EF

=>\(\widehat{BAD}=\widehat{BEF}\)

mà \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)(góc tạo bởi tiếp tuyến BA và dây cung AD)

nên \(\widehat{BEF}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{BEF}=\widehat{PCQ}\)