Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a và b cô hướng dẫn:
a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
b) Tứ giác FDEA là hình bình hành nên AF // DE
c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)
Do tam giác ABC vuông tại A, M là trung điểm BC nên MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)
Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)
\(\Rightarrow\widehat{FAM}=90^o\)
Vậy tam giác AFM vuông.
c) Gọi giao điểm của AM và DE là G.
Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.
Vậy thì ta có ngay AFDE là hình chữ nhật.
Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.
Vậy thì AM, DE và KI đồng quy tại điểm G.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)
=> ADME là hình chữ nhật
=> AM= DE
b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)
Do ADME là HCN => DA = ME
=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)
=> DI = EK
Xét tứ giác DIEK có DI = EK (cmt)
DI// EK (vì CEMD là HCN)
=> DKEI là hình bình hành
Do O là trung điểm của DE => KI đi qua O
=> DE cắt IK tại O và OD = OE; OK = OI (1)
Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường
c) don't know, tự làm
Ai giúp em với ạ
Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.
Vì D là trung điểm của BC nên BD = CD.
Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.
Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.
Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).
Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
Do đó, ta có AE = AF và DE = DF.
Vì M là trung điểm của HC nên ta có HM = MC.
Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.
Ta cần chứng minh FM vuông góc với AM.
Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.
Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).
Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).
Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).
Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.
Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.
Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.
Do đó, ta có góc FAM = 90°.
Do đó, FM vuông góc với AM.