K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

tớ chịu

1 tháng 5 2021

Xét tam giác vuông HBA và tam giác vuông ABC có:

B là góc chung

 suy ra tam giác vuông HBA đồng dạng tam giác vuông ABC

suy ra HB/AB=BA/BC=HA/AC

suy ra BA/BC=HA/AC

suy ra 3/5=HA/4(BC bạn tính theo Py- ta-go nhe)

suy ra HA=4x3/5=2,4cm

19 tháng 12 2020

Hình vẽ bạn phải tự vẽ được chứ, bài này là bài rất rất rất cơ bản rồi đấy:vv

Ta có tam giác ABC là tam giác vuông

=> SABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.4.3=6\) (cm2)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2=AB2+AC2=42+32=52

=> BC=5(cm)

Mà SABC=\(\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.AH.5=2,5.AH=6\)

=> AH=2,4(cm)

Vậy...

Có thể do cẩu thả mình sai số chỗ nào đó nhưng hướng làm như này nhé, đáng nhẽ bài này mình không giải đâu:vv

1 phần 2 ở bạn lấy ở đâu vậy

13 tháng 3 2022

+xét tam giác ABC vuông tại A:

=> BC2=AC2+AB2(Định lý pytago)

hay BC2=16+9

BC2= 25

Mà BC>0

=> BC=5(cm)

+xét tam giác ABH vuông tại H và tam giác ABC vuông tại A có:

GÓC B: góc chung

góc A=góc H=90độ (tam giác ABC vuông tại A,AH:đường cao)

=> tam giác ABH đồng dạng với tam giác ABC(góc-góc)

=> BH/AB=BA/BC(các cặp cạnh tương ứng tỉ lệ)

hay BH/3=3/5

=> BH=1,8(cm)

=> HC=5-1,8=4,8(cm) 

p/s: mình thấy sai sai , vì sao có dữ liệu phân giác góc C mà lại không dùng đến(bạn tham khảo thử bài mình thôi nhé).Các góc,đồng dạng,độ , bạn cùng kí hiệu.Thông cảm hình mình vẽ hơi tởm=))

13 tháng 9 2023

a)

Xét tam giác \(ABC\) vuông tại \(A\) ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

\( \Leftrightarrow {3^2} + {4^2} = B{C^2}\)

\( \Leftrightarrow B{C^2} = 25\)

\( \Rightarrow BC = 5cm\)

Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 5 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{5 - BD}} = \frac{3}{4} \Leftrightarrow 4.BD = 3.\left( {5 - BD} \right) \Rightarrow 4.BD = 15 - 3.BD\)

\( \Leftrightarrow 4BD + 3BD = 15 \Leftrightarrow 7BD = 15 \Rightarrow BD = \frac{{15}}{7}\)

\( \Rightarrow DC = 5 - \frac{{15}}{7} = \frac{{20}}{7}\)

Vậy \(BC = 5cm;BD = \frac{{15}}{7}cm;DC = \frac{{20}}{7}cm\).

b) Diện tích tam giác \(ABC\) vuông tại \(A\) là:

\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.4.3 = 6\left( {c{m^2}} \right)\)

Mặt khác \({S_{ABC}} = \frac{1}{2}.AH.BC = \frac{1}{2}.AH.5 = 6\)

\( \Rightarrow AH = \frac{{6.2}}{5} = 2,4cm\).

Xét tam giác \(AHB\) vuông tại \(H\) ta có:

\(A{H^2} + H{B^2} = A{B^2}\)

\( \Leftrightarrow H{B^2} = A{B^2} - A{H^2}\)

\( \Leftrightarrow H{B^2} = {3^2} - 2,{4^2}\)

\( \Leftrightarrow H{B^2} = 3,24\)

\( \Rightarrow HB = 1,8cm\)

\(HD = BD - BH = \frac{{15}}{7} - 1,8 = \frac{{12}}{7}cm\).

Xét tam giác \(AHD\) vuông tại \(H\) ta có:

\(A{H^2} + H{D^2} = A{D^2}\)

\( \Leftrightarrow A{D^2} = {\left( {\frac{{12}}{7}} \right)^2} + 2,{4^2}\)

\( \Leftrightarrow A{D^2} = \frac{{144}}{{49}} + \frac{{144}}{{25}}\)

\( \Rightarrow AD \approx 2,95cm\)

Vậy \(AH = 2,4cm;HD = \frac{{12}}{7}cm;AD = 2,95cm\).

7 tháng 9 2019

Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

Suy ra: BH=1,8cm; AH=2,4cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

27 tháng 8 2018

Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2

Đáp án: D