K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Hình vẽ bạn phải tự vẽ được chứ, bài này là bài rất rất rất cơ bản rồi đấy:vv

Ta có tam giác ABC là tam giác vuông

=> SABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.4.3=6\) (cm2)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2=AB2+AC2=42+32=52

=> BC=5(cm)

Mà SABC=\(\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.AH.5=2,5.AH=6\)

=> AH=2,4(cm)

Vậy...

Có thể do cẩu thả mình sai số chỗ nào đó nhưng hướng làm như này nhé, đáng nhẽ bài này mình không giải đâu:vv

1 phần 2 ở bạn lấy ở đâu vậy

a) Xét tứ giác AKHP có 

\(\widehat{PAK}=90^0\)(ΔABC vuông tại A)

\(\widehat{AKH}=90^0\left(HK\perp AB\right)\)

\(\widehat{APH}=90^0\left(HP\perp AC\right)\)

Do đó: AKHP là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

2 tháng 5 2022

a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

BC2= 32+42

BC2= 9+16

BC2=25

BC= 5 (cm)

Vì BD là phân giác 

=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)

gọi AD là x, CD là 4-x

=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)

5x= 3.(4-x)

5x= 12-3x

5x+3x=12

8x=12

x= 1,5 (cm)

Vậy AD= 1,5 cm

b. Xét tam giác ABC và tam giác HBA:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA

c. Vì tam giác ABC ~ tam giác HBA (cmt)

=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)

=> AB2=BC.HB

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

còn tính diện tích nx bn ơi

 

 

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>EF=AH

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

13 tháng 9 2023

a)

Xét tam giác \(ABC\) vuông tại \(A\) ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

\( \Leftrightarrow {3^2} + {4^2} = B{C^2}\)

\( \Leftrightarrow B{C^2} = 25\)

\( \Rightarrow BC = 5cm\)

Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 5 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{5 - BD}} = \frac{3}{4} \Leftrightarrow 4.BD = 3.\left( {5 - BD} \right) \Rightarrow 4.BD = 15 - 3.BD\)

\( \Leftrightarrow 4BD + 3BD = 15 \Leftrightarrow 7BD = 15 \Rightarrow BD = \frac{{15}}{7}\)

\( \Rightarrow DC = 5 - \frac{{15}}{7} = \frac{{20}}{7}\)

Vậy \(BC = 5cm;BD = \frac{{15}}{7}cm;DC = \frac{{20}}{7}cm\).

b) Diện tích tam giác \(ABC\) vuông tại \(A\) là:

\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.4.3 = 6\left( {c{m^2}} \right)\)

Mặt khác \({S_{ABC}} = \frac{1}{2}.AH.BC = \frac{1}{2}.AH.5 = 6\)

\( \Rightarrow AH = \frac{{6.2}}{5} = 2,4cm\).

Xét tam giác \(AHB\) vuông tại \(H\) ta có:

\(A{H^2} + H{B^2} = A{B^2}\)

\( \Leftrightarrow H{B^2} = A{B^2} - A{H^2}\)

\( \Leftrightarrow H{B^2} = {3^2} - 2,{4^2}\)

\( \Leftrightarrow H{B^2} = 3,24\)

\( \Rightarrow HB = 1,8cm\)

\(HD = BD - BH = \frac{{15}}{7} - 1,8 = \frac{{12}}{7}cm\).

Xét tam giác \(AHD\) vuông tại \(H\) ta có:

\(A{H^2} + H{D^2} = A{D^2}\)

\( \Leftrightarrow A{D^2} = {\left( {\frac{{12}}{7}} \right)^2} + 2,{4^2}\)

\( \Leftrightarrow A{D^2} = \frac{{144}}{{49}} + \frac{{144}}{{25}}\)

\( \Rightarrow AD \approx 2,95cm\)

Vậy \(AH = 2,4cm;HD = \frac{{12}}{7}cm;AD = 2,95cm\).

Sửa đề: AC=4cm; AB=3cm

a: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=4/8=0,5

=>AD=1,5cm; CD=2,5cm

\(BD=\sqrt{1.5^2+3^2}=\dfrac{3}{2}\sqrt{5}\left(cm\right)\)