Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔAEC= ΔBDA
⇒AE = BD và EC = DA
Mà DE = DA + AE
Vậy: DE = CE + BD
Xét ΔABD và ΔCAE có:
Góc ADB=Góc CEA=90
AB=AC
GócABD=Góc CAE( cùng phụ góc BAD)
=>ΔABD=ΔCAE
b) Ta có ΔABD=ΔCAE
=> AD=CE và BD=AE
=>BD+CE=AE+AD=ED
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Bài 2)
a) Xét ∆AOD và ∆COB có:
^OAD=^OCB(so le trong)
AD=BC(gt)
^ADO=^CBO(so le trong)
suy ra ∆AOD=∆COB (g-c-g)
do đó OA=OC (hai cạnh tương tứng)
b)
Xét ∆AEO và ∆COF có:
^EAO=^OCF (so le trong)
OA=OC (c/m trên)
^AOE=^COF (đối đỉnh)
suy ra ∆AEO=∆COF (g-c-g)
do đó OE=OF (hai cạnh tương ứng)
Ta có: ∠(BAD) +∠(BAC) +∠(CAE) =180o(kề bù)
Mà ∠(BAC) =90o (gt) ⇒∠(BAD) +∠(CAE) =90o (1)
Trong ΔAEC, ta có: ∠(AEC) =90o ⇒∠(CAE) +∠(ACE) =90o (2)
Từ (1) và (2) suy ra: ∠(BAD) =∠(ACE)
Xét hai tam giác vuông AEC và BDA, ta có:
∠(AEC) = ∠(ADB) = 90o
AC = AB (gt)
∠(ACE) = ∠(BAD) (chứng minh trên)
Suy ra: ΔAEC= ΔBDA (cạnh huyền- góc nhọn)
Ta có ;
Góc DAB + góc BAC + góc CAE = 180' (bù nhau)
Mà góc BAC = 90 '
---> góc DAB + góc CAE = 90' ( 1)
Ta có ΔAEC có tổng ba góc = 180'
góc E = 90'
---> góc CAE + góc ECA = 90' ( 2)
Từ 1 và 2 ---> góc ACE = góc DAB
a)Xét ΔDAB và ΔAEC có :
góc D = góc E ( vuông góc )
AB = AC ( GT )
góc ACE = góc DAB ( CMT )
---> ΔDBA = ΔEAC ( cạnh huyền- góc nhọn)
b)-->DA = EC ; DB = EA ( hai cạnh tương ứng )
---> DA + AE = EC + DB = DE
a) ta co : goc DAB+ goc BAC+ goc CAE=180-> goc DAB+ goc CAE=180- goc BAC
ma goc BAC =90 ( tam giac ABC vuong tai A)
nen goc DAB+ goc CAE=180-90=90
lai co gic DAB+ goc DBA=90 ( tam giac BAD vuong tai D)
==> goc CAE=goc DBA
xet tam giac vuong BDA va tam giac AEC ta co :
AB= AC ( gt) goc DBA= goc CAE (cmt)
--> cm tam giac BDA= tam giac AEC ( ch=gn)
b) tam giac BDA= tamgia AEC --> DA=CE va BD=AE
ma DE = DA+AE--->DE=EC+AE
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)