Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông tại A,có ABcho tam giác ABC vuông tại A,có AB<AC.Gọi M và n lần lượt là hình chiếu của D trên AB và AC,BN cắt CM tại K,AK cắt Dm tại I,BN cắt DM tại E ,CM cắt DN tại F.a) chứng minh EF song song BC b) C/m K là trực tâm tam giác AEFc) tính góc BID
ĐS: chiu thúa
a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB => \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)
Lại có: DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)
Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)
hay \(EF\)//\(BC\)(đpcm)
b) Dễdàng c/m được: Tứ giác AMDN là hình vuông => AM=MD=DN=AN
Gọi giao điểm của AE và FM là O
Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)
Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)
Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.
Xét \(\Delta\)AME và \(\Delta\)MDF:
AM=MD
^AME=^MDF => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)
EM=DF (cmt)
Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900
Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE
Tương tự ta c/m được EN vuông góc với AF
=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K
Vậy K là trực tâm tam giác AEF (đpcm).
c) Gọi BI giao AD tại H
K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC
hay AK vuông góc với BD
Xét tam giác BAD:
AK vuông góc BD
DM vuông góc AB => I là trực tâm tam giác BAD
AK cắt DM tại I
=> BI vuông góc AD => IH vuông góc với AD.
Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H
=> ^HID = 450 => ^BID=1350.
Vậy ^BID=1350.