K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Ai giúp mình với 

28 tháng 4 2018
Tự vẽ hình nha a) Xét AMB và NMC có AM= MC AMB=CMN BM=MN =>ABM= CMN (c.g.c) b)Theo câu a => AB= CN=8 Áp dụng pytago vào tam giác ABC có AB^2+AC^2=BC^2 BC=14.41 Vì 8 <14.41=>CN
15 tháng 4 2021

A B C H 5 5 8

a, Xét tam giác AHB và tam giác AHC ta có : 

AH _ chung 

AB = AC ( gt )

^AHB = ^AHC ( AH là đường cao ) 

Vậy tam giác AHB = tam giác AHC ( ch - cgv )

b, Vì tam giác AHB = tam giác AHC ( cma )

=> HB = HC 2 cạnh tương ứng 

\(\Rightarrow HB=HC=\frac{BC}{2}=\frac{8}{2}=4\)cm 

Áp dụng định lí Py ta g cho tam giác AHB vuông tại H ta được : 

\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2=25-16=9\Rightarrow AH=3\)cm 

a: Xét ΔMAB và ΔMCD co

MA=MC

góc AMB=góc CMD

MB=MD

=>ΔMAB=ΔMCD

=>AB=CD và góc MAB=góc MCD

=>AB//CD

=>AC vuông góc DC

b: Xét tứ giac ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC và AD=BC

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

a: AB=AC=8cm

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD

8 tháng 7 2019

a) Xét ΔABC vuông tại A, có:

BC2=AB2+AC2 ( Định lý Py-Ta-Go)

(=) 102=AB2+82

(=) 100=AB2+64

(=) AB2= 36

(=) AB =6(cm)  (do AB >0)

a) Áp dụng định lý Py ta go ta có :

BC2 =AB+ AC2

=> AB2 = 100 - 64 

=> AB = 6 cm

b) Xét ∆BAM và ∆DCM ta có :

BM = MD 

AM = MC ( BM là trung tuyến) 

BMA = CMD ( đối đỉnh) 

=> ∆BAM = ∆DCM (c.g.c)

=> BAC = MCD = 90 độ 

=> AC vuông góc với CD (dpcm)

=> AB = CD ( tg ứng )(dpcm)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔCEB có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCEB cân tại C

mà CA là đường cao

nên CA là phân giác của góc BCE

c: ΔABC vuông tại A có AN là trung tuyến

nên AN=BC/2=5cm

Xét ΔABC có

AN,BM là trung tuyến

AN cắt BM tại K

=>K là trọng tâm

=>AK=2/3AN=10/3(cm)