Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác AHC ta có :
AH _ chung
AB = AC ( gt )
^AHB = ^AHC ( AH là đường cao )
Vậy tam giác AHB = tam giác AHC ( ch - cgv )
b, Vì tam giác AHB = tam giác AHC ( cma )
=> HB = HC 2 cạnh tương ứng
\(\Rightarrow HB=HC=\frac{BC}{2}=\frac{8}{2}=4\)cm
Áp dụng định lí Py ta g cho tam giác AHB vuông tại H ta được :
\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2=25-16=9\Rightarrow AH=3\)cm
a: Xét ΔMAB và ΔMCD co
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD và góc MAB=góc MCD
=>AB//CD
=>AC vuông góc DC
b: Xét tứ giac ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC và AD=BC
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
a: AB=AC=8cm
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a) Xét ΔABC vuông tại A, có:
BC2=AB2+AC2 ( Định lý Py-Ta-Go)
(=) 102=AB2+82
(=) 100=AB2+64
(=) AB2= 36
(=) AB =6(cm) (do AB >0)
a) Áp dụng định lý Py ta go ta có :
BC2 =AB2 + AC2
=> AB2 = 100 - 64
=> AB = 6 cm
b) Xét ∆BAM và ∆DCM ta có :
BM = MD
AM = MC ( BM là trung tuyến)
BMA = CMD ( đối đỉnh)
=> ∆BAM = ∆DCM (c.g.c)
=> BAC = MCD = 90 độ
=> AC vuông góc với CD (dpcm)
=> AB = CD ( tg ứng )(dpcm)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔCEB có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCEB cân tại C
mà CA là đường cao
nên CA là phân giác của góc BCE
c: ΔABC vuông tại A có AN là trung tuyến
nên AN=BC/2=5cm
Xét ΔABC có
AN,BM là trung tuyến
AN cắt BM tại K
=>K là trọng tâm
=>AK=2/3AN=10/3(cm)