K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì AD là phân giác \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow CD=\dfrac{40}{7}cm;BD=\dfrac{30}{7}cm\)

Xét tam giác ABH và tam giác CBA có 

^AHB = ^BAC = 900

^ABH _ chung 

Vậy tam giác ABH ~ tam giác CBA (g.g)

\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

-> DH = BD - BH = \(\dfrac{30}{7}-\dfrac{18}{5}=\dfrac{150-136}{35}=\dfrac{14}{35}=\dfrac{2}{5}\)cm 

b, \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

Vì HM vuông AB; HN vuông AC ; BA vuông AC nên tg AMHN là hcn 

=> AH = MN = 24/5 cm 

c, Xét tam giác AHM và tam giác ABH có 

^HAM _ chung ; ^AMH = ^AHB = 900

Vậy tam giác AHM ~ tam giác ABH (g.g) 

\(\dfrac{AH}{AB}=\dfrac{AM}{AH}\Rightarrow AH^2=AM.AB\)

tương tự tam giác AHN ~ tam giác ACH (g.g)

\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\Rightarrow AH^2=AN.AC\)

=> AM . AB = AN . AC 

 

Câu c là AM. AB=AN. AC nha mn giúp mik vs 

19 tháng 12 2017

không biết

20 tháng 12 2019

Hoang ơi! Bạn rảnh vừa phải thôi

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

10 tháng 3 2022

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)
2 tháng 5 2017

kết bạn đi ,rùi mình nói

2 tháng 5 2017

 dung ác quá

23 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/CD=AB/AC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

a: DB/DC=AB/AC=4/3

b: Sửa đề: AH/CA=AB/BC

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>AH*BC=AB*AC

=>AH/AC=AB/CB

28 tháng 12 2020

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB, N∈AC)

\(\widehat{AMH}=90^0\)(HM⊥AB)

\(\widehat{ANH}=90^0\)(HN⊥AC)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)(1)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=AH\cdot\dfrac{10}{2}=5\cdot AH\)(2)

Từ (1) và (2) suy ra \(5\cdot AH=24\)

hay AH=4,8cm

Ta có: AMHN là hình chữ nhật(cmt)

nên AH=MN(Hai đường chéo trong hình chữ nhật AMHN)

mà AH=4,8cm(cmt)

nên MN=4,8cm

Vậy: MN=4,8cm

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn?