K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Dùng định lý của tia phân giác mới học sau bài dịnh lý Ta-lét đó lặp tỉ số ra thôi haha

15 tháng 2 2016

giải ra được ko bạn

 

30 tháng 5 2016

A B C D H

Áp dụng định lí Pytago, được : \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

Đặt BD = x (cm)  (0x<5) => CD = 5-x (cm)

Theo tính chất tia phân giác, ta có : \(\frac{AB}{AC}=\frac{BD}{CD}\)hay \(\frac{x}{5-x}=\frac{3}{4}\Rightarrow4x=-3x+15\Rightarrow x=\frac{15}{7}\)

Lại có DH // AC => \(\frac{BD}{BC}=\frac{DH}{AC}\Rightarrow DH=\frac{BD.AC}{BC}=\frac{\frac{15}{7}.4}{5}=\frac{12}{7}\)(cm)

Vậy DH = 12/7 cm.

1: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phan giác

=>AMDN là hình vuông

2: BC=căn 3^2+4^2=5cm

AD là phân giác

=>DB/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)

b: Sửa đề: vuông góc AC

Xét ΔABC vuông tại A và ΔHDC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHDC

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=4

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)

b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có

\(\widehat{HCD}\) chung

Do đó: ΔCHD đồng dạng với ΔCAB

=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)

=>\(CH\cdot CB=CA\cdot CD\)

c: Ta có: AE\(\perp\)BC

DH\(\perp\)BC

Do đó: HD//AE

Xét ΔAEC có HD//AE

nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)

mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)

nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)

d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

=>BD\(\perp\)AH tại O và O là trung điểm của AH

=>OA=OH(3)

Xét ΔCMN có AO//MN

nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)

Xét ΔCBM có OH//BM

nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)

Từ (3),(4),(5) suy ra MN=BM

=>M là trung điểm của BN

Sửa đề: M là hình chiếu của D trên BC

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

=>CM/CA=CD/CB

=>CM*CB=CA*CD

c: góc DMB+góc DAB=180 độ

=>DMBA nội tiếp

=>góc CBD=góc CAM