Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
b) Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
hay \(\widehat{B}\simeq53^0\)
\(\Leftrightarrow\widehat{C}=37^0\)
c) Xét ΔABC có AE là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Tự vẽ hình:
a) Ta có: Áp dụng định lý Pytago:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=5^2-3^2=16=4^2\)
\(\Rightarrow AC=4\left(cm\right)\)
Từ đó ta dễ dàng tính được: \(AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)
a: Xét ΔBAC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=12(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
cách giải như sau:
EB là đường phân giác ngoài của ^B nên vg với đường phân giác trong BD
BD phân giác trong ^B
=> BA / BC = DA / DC, đặc AB = a => BC = căn(a^2 + (3+ 5)^2)
=> a/ căn( a^2 + 8^2) = 3/5
bình phương 2 vế:
a^2 /( a^2 + 8) = 9/25
<> 25a^2 = 9a^2 + 576
<> a^2 = 36 <> a= 6 ( do a hk âm )
=> AB = 6 => BC = 10
do tg EBD vuông tai B đường cao BA
=> AB^2 = AE.AD
=> AE = AB^2 / AD = 36 / 3 = 12
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
a) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq37^0\)