Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AB=AC
AK chung
KB=KC
Do đó: ΔAKB=ΔAKC
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
a) Xét tam giác AKB và tam giác AKC
. AK cạnh chung
. AB =AC (gt)
. BK = KC (gt )
Vậy tam giác AKB = tam giác AKC
Ta có : AK vuông góc BC
CM vuông góc BC
vậy : AK song song CM
a, Xét △ACK và △ABK
Có: AC = AB (gt)
CK = BK (gt)
AK là cạnh chung
=> △ACK = △ABK (c.c.c)
b, Vì △ACK = △ABK (cmt)
=> AKC = AKB (2 góc tương ứng)
Mà AKC + AKB = 180o (2 góc kề bù)
=> AKC = AKB = 180o : 2 = 90o
=> AK ⊥ BC