Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
a) Xét tam giác AKB và tam giác AKC, ta có:
AK là cạnh chung
KB = KC (vì K là trung điểm của BC)
AB = AC (gt)
Suy ra: Tam giác AKB = Tam giác AKC (c-c-c)
Vì tam giác AKB = Tam giác AKC (cmt)
Nên góc AKB = góc AKC (2 cạnh tương ứng)
mà góc AKB + góc AKC = 1800 (Kề bù)
Suy ra \(AK\perp KC\)hay \(AK\perp BC\)
b) Ta có \(AK\perp BC\)
\(EC\perp BC\)
Suy ra: \(AK//EC\)(Từ vuông góc đến song song)
c) Xét tam giác CEA và tam giác CBA, ta có
Góc CEA = Góc CBA (=900) (vÌ Góc CEA + góc CBA = 1800, KỀ BÙ)
CA chung
Góc A = Góc C (=900)
Suy ra: Tam giác CEA = Tam giác CBA (g-c-g)
Nên CE = CB (2 cạnh tương ứng)
Vậy......
~Hok tốt nha Nguyễn thái bình ~~
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: (đpcm)
. Mà . Do đó:
(đpcm)
b)
Ta thấy: (đã cm ở phần a)
(đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên
Tam giác CBE vuông tại C có
nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
d mình ko biết
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: EC vuông góc với CB
AK vuông góc với CB
Do dó: EC//AK
c: Xét ΔCEB vuông tại C có góc B=45 độ
nen ΔCEB vuông cân tại C
=>CA là phân giác của góc BCE
a) Xét tam giác AKB và tam giác AKC
. AK cạnh chung
. AB =AC (gt)
. BK = KC (gt )
Vậy tam giác AKB = tam giác AKC
Ta có : AK vuông góc BC
CM vuông góc BC
vậy : AK song song CM
Câu trả lời
a.Vì AB=AC(gt)=> góc ABC=góc ACB ( tam giác ABC vuông cân)
mặt khác BK=KC(trung điểm BC)
=> tam giác AKB=tam giác AKC (c.g.c)
b.Vì tam giác AKB=tam giác AKC (theo câu a)
=> góc AKB=góc AKC
Mà góc AKB+góc AKC=180°
=>góc AKB=góc AKC=90°=> AK vuông góc với BC
c.Vì EC vuông góc với BC
AK vuông góc với BC
=>EC//AK =>E//K
phần a , có ab = ac , bk = kc , \(\widehat{b}\)=\(\widehat{c}\). phần b , có NC vuông vs BC , AK vuông BC [ tc tam giác vuông cân] suy ra chúng song song vì cùng vuông vs BC , phần c có hai góc a bằng 90 độ , góc B bằng góc N do cùng phụ vs góc BCN , ac chung suy ra hai tam giác BCA và ACN bằng nhau , suy ra CN =CB