K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2023

\(1+tan^2B=1+\left(\dfrac{AC}{AB}\right)^2=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}\)

\(=\dfrac{1}{cos^2B}\)

1+tan^2B

=1+(AC/AB)^2

=AB^2/AB^2+AC^2/AB^2

=BC^2/AB^2

=1:(AB/BC)^2

=1:cos^2B

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

29 tháng 11 2023

Ta có \(AC^2=CH.BC=AB.BC\)

Mà \(BC^2=AB^2+AC^2\) \(=AB^2+AB.BC\)

\(\Leftrightarrow AB^2+AB.BC-BC^2=0\)

\(\Leftrightarrow\left(\dfrac{AB}{BC}\right)^2+\dfrac{AB}{BC}-1=0\)

\(\Leftrightarrow\dfrac{AB}{BC}=\dfrac{-1+\sqrt{5}}{2}\)  (loại TH \(\dfrac{AB}{BC}=\dfrac{-1-\sqrt{5}}{2}< 0\))

\(\Leftrightarrow\cos B=\dfrac{\sqrt{5}-1}{2}\), đpcm.

 

5 tháng 6 2018

Làm câu c thôi

5 tháng 6 2018

ABCHcabDEH**Cái tia phân giác là của câu a, không cần để ý nó**

Hình