K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

nếu bạn đã học định lí Py-ta-go rồi thì ta có: AB\(^2\)+ AC\(^2\)=BC\(^2\)

                                                                5\(^2\)+    AC \(^2\)= 121

                                                                            AC        = \(\sqrt{96}\)

NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!

24 tháng 1 2017

ta có BH + HC = BC ( vì điểm H nằm giữa B và C )

    hay 3 + 8 = BC 

suy ra BC =  11 

áp dụng định lý pi ta go thì bạn sẽ tìm ra AC

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

7 tháng 2 2016

Hình bé tự vẽ nhá.

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH2 +BH2 =AB2

        AH= AB2 - BH2

        AH2 = 5- 32

=>.     AH2 = 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH2 + HC2 = AC2

4+ 52 = AC2

=> AC2 = 41

AC = \(\sqrt{41}\)

7 tháng 2 2016

Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;

AH2+BH2=AB2 

=>AH2=AB2-BH2=52-32

=>AH2=25-9=16

=>AH=+(-)4

mà AH>0 =>AH=4 cm

Lại có;

BH+HC=BC 

=>HC=BC-BH=8-3

=>HC=5 cm

Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:

AC2=AH2+HC2

=>AC2=42+52=16+25

=>AC2=41

=>AC=+(-)\(\sqrt{41}\)

Mà AC >0 =>AC=\(\sqrt{41}\)cm

Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm

3 tháng 2 2018

- Ta có tam giác ABC vuông tại H

Áp dụng định lí Pi-ta-go có:

\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)

Tương tự ta có:...(bn tự làm)

Tam giác AHC vuông tại H

=> cũng như trên

3 tháng 2 2018

Tự vẽ nhé

 Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:

   AH\(^2\)+ BH\(^2\)= AB\(^2\)

    AH\(^2\)\(AB^2-BH^2\)

   \(AH^2=5^2-3^2\)

\(=>AH^2=16\)

\(AH=4cm\)

Theo đề, ta có: AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

 HC = 8  - 3

 HC=5 cm

Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:

      \(AH^2+HC^2=AC^2\)

        \(4^2+5^2=AC^2\)

=>   \(AC^2=41\)

=> \(AC=\sqrt{41}\)

11 tháng 3 2021

hình bạn tự vẽ nha

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH+BH=AB2

        AH2  = AB- BH2

        AH= 52  - 32

=>.     AH= 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH+ HC= AC2

42  + 5= AC2

=> AC= 41

AC = √41

11 tháng 2 2020

A B C H

XÉT \(\Delta ABH\)VUÔNG TẠI H

\(AB^2=AH^2+HB^2\)( ĐL PY-TA-GO)

THAY\(5^2=AH^2+3^2\)

         \(25=AH^2+9\)

     \(AH^2=25-9\)

    \(AH^2=16\)

\(AH=\sqrt{16}=4\left(cm\right)\)

TA CÓ \(BH+HC=BC\)

                \(3+HC=8\)

                        \(HC=5\left(cm\right)\)

xét \(\Delta AHC\)VUÔNG TẠI H

CÓ \(AC^2=AH^2+HC^2\)(ĐỊNH LÝ PYTAGO)

\(AC^2=4^2+5^2\)

\(AC^2=16+25\)

\(AC^2=41\)

\(AC=\sqrt{41}\)

25 tháng 6 2021

Diện tích tam giác ABC là:

     6.8:2=24 (cm2)

Áp dụng định lí Py-ta-go cho tam giác ABC, ta có:

AB2+AC2=BC2

=>62+82=BC2=>36+64=BC2=>BC=10 (cm)

Đường cao AH dài là:

     24.2:10=4,8 (cm)

Áp dụng định lí Py-ta-go cho tam giác ABH, ta có:

AH2+BH2=AB2

=>4,82+BH2=36

=>23,04+BH2=36

=>BH2=12,96=>BH=3,6 (cm)

Độ dài CH là:

     10-3,6=6,4 (cm)

           Đáp số: AH: 4,8 cm; BH: 3,6 cm; CH: 6,4 cm; BC: 10 cm

26 tháng 6 2021

\(\text{Áp dụng định lý Pytago ta có:}\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=6^2+8^2\)

\(\Rightarrow BC^2=100\)

\(\Rightarrow BC=10\left(\text{Vì BC}>0\right)\)

\(S_{\Delta ABC}\text{ là}:\)

\(\frac{6.8}{2}=24\)

\(\text{Vì AH là đường cao hạ từ đỉnh A và BC là đáy tương ứng với đường cao AH nên}\)

\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{10.AH}{2}=24\)

\(\Rightarrow AH=24:5=4,8\)

\(\text{Áp dụng định lý Pytago ta có:}\)

\(AB^2=AH^2+BH^2\)

\(\Rightarrow6^2=4,8^2+BH^2\)

\(BH^2=12.96\)

\(BH=3,6\)

\(\text{CH thì tính tương tự như BH nha}\)