Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có tam giác ABC vuông tại H
Áp dụng định lí Pi-ta-go có:
\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)
Tương tự ta có:...(bn tự làm)
Tam giác AHC vuông tại H
=> cũng như trên
Tự vẽ nhé
Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:
AH\(^2\)+ BH\(^2\)= AB\(^2\)
AH\(^2\)= \(AB^2-BH^2\)
\(AH^2=5^2-3^2\)
\(=>AH^2=16\)
\(AH=4cm\)
Theo đề, ta có: AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC=5 cm
Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:
\(AH^2+HC^2=AC^2\)
\(4^2+5^2=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)
hình bạn tự vẽ nha
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :
AH2 +BH2 =AB2
AH2 = AB2 - BH2
AH2 = 52 - 32
=>. AH2 = 16
AH = 4 (cm)
Theo đề, có : AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC = 5 (cm)
Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :
AH2 + HC2 = AC2
42 + 52 = AC2
=> AC2 = 41
AC = √41
XÉT \(\Delta ABH\)VUÔNG TẠI H
CÓ\(AB^2=AH^2+HB^2\)( ĐL PY-TA-GO)
THAY\(5^2=AH^2+3^2\)
\(25=AH^2+9\)
\(AH^2=25-9\)
\(AH^2=16\)
\(AH=\sqrt{16}=4\left(cm\right)\)
TA CÓ \(BH+HC=BC\)
\(3+HC=8\)
\(HC=5\left(cm\right)\)
xét \(\Delta AHC\)VUÔNG TẠI H
CÓ \(AC^2=AH^2+HC^2\)(ĐỊNH LÝ PYTAGO)
\(AC^2=4^2+5^2\)
\(AC^2=16+25\)
\(AC^2=41\)
\(AC=\sqrt{41}\)
cho tam giác ABC , kẻ AH vuông góc với BC . biết AB=5cm , BH=8cm . tính độ dài các cạnh AH , HC , AC
Bạn tham khảo nhé!
https://olm.vn/hoi-dap/detail/33236210534.html
Bạn đã hk định lí Pi-ta-go chưa ? Nếu hk rồi thì sau đây là cách giải:
tam giác ABH vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AH2=AB2-BH2=52-32=16 => AH=4
Ta có: HC=BC-BH=8-3=5 =>HC=5
Tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
AC2=AH2+HC2=42+52=41
Nếu có sai ở đâu thì sửa đi nhé !
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)√41
Mà AC >0 =>AC=√41cm
Vậy AH=4 cm; HC=5 cm ; AC= √41cm
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Hình bé tự vẽ nhá.
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :
AH2 +BH2 =AB2
AH2 = AB2 - BH2
AH2 = 52 - 32
=>. AH2 = 16
AH = 4 (cm)
Theo đề, có : AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC = 5 (cm)
Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :
AH2 + HC2 = AC2
42 + 52 = AC2
=> AC2 = 41
AC = \(\sqrt{41}\)
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)\(\sqrt{41}\)
Mà AC >0 =>AC=\(\sqrt{41}\)cm
Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm