Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BC = a, CA = b, AB = c.
Do tam giác ABC vuông tại A nên: \(a^2=b^2+c^2\) (định lý Pytago).
Ta tính được: \(m=\dfrac{a+c-b}{2};n=\dfrac{c+b-a}{2}\).
Từ đó: \(mn=\dfrac{\left(a+c-b\right)\left(c+b-a\right)}{4}=\dfrac{c^2-\left(a-b\right)^2}{4}=\dfrac{\left(a^2+b^2\right)-\left(a-b\right)^2}{4}=\dfrac{ab}{2}=S_{ABC}\).
Vậy...
a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)
kẻ IE vuông vs AC ; ID vuông vs AB
do Bi là p/g góc ABC
CI là p/g góc ACB
suy ra ID=IK
lại có ID//AE ( cung vuông vs AD)
IE//AD ( cùng vuông vs AE )
suy ra ID=IE=AD=AE=IK
đặt ID=IE=AD=AE=IK=x
xét tam giác BIK= tam giác BID
=) BD=BK=a
tương tự =) CK=CE=b
áp dụng định lí py ta go cho ABC vuông tại A ta có:
AB^2 + AC^2= BC^2
(a+x)^2 + (b+x)^2 = (a+b)^2
ax + bx +x^2 =ab
( phần sau tự lm)
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB
a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
Suy ra: AH=IK
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AH^2=AI\cdot AB\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AH^2=AK\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay AI/AC=AK/AB
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
AI/AC=AK/AB
Do đó: ΔAIK\(\sim\)ΔACB