K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

A B C D H 1 2 1 2 1

\(a,\widehat{ABC}=60^o\)( theo đề bài )

\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :

\(BD\)là cạnh chung \(\left(1\right)\)

\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)\(\left(2\right)\)

Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)

\(=180^o-30^o-90^o=60^o\)

\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)

\(=180^o-30^o-90^o=60^o\)

\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)

Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)

\(c,\)Không có điểm \(K\)

5 tháng 6 2023

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có:
- BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\) (vì BD là tia phân giác \(\widehat{ABC}\))

Suy ra ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Từ a) suy ra AD = DH (hai cạnh tương ứng)

c) Đề bị thiếu: Điểm M ở đâu???

5 tháng 6 2023

a) + Vì tam giác ABC vuông tại A (gt)
    => tam giác ABD vuông tại a
    + Vì DH vuông góc với BC (gt)
    => tam giác HBD vuông tại H
    + Xét ΔABD và ΔHBD, có:
       + Chung BD 
       + góc ABD = góc HBD (BD là tia phân giác của góc ABC)
    => ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Vì ΔABD = ΔHBD (cmt)
    => AD = DH (2 cạnh tương ứng)

c) Ko đủ dữ kiện 

2 tháng 5 2023

loading...    

a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:

BD chung

∠ABD = ∠HBD (BD là phân giác của ∠ABH)

⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)

b) Do ∆ABD = ∆HBD (cmt)

⇒ AB = BH (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AH (1)

Do ∆ABD = ∆HBD (cmt)

⇒ AD = HD (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AH

c) Xét ∆ADK và ∆HDC có:

AD = HD (cmt)

∠ADK = ∠HDC (đối đỉnh)

DK = DC (gt)

⇒ ∆ADK = ∆HDC (c-g-c)

⇒ ∠DAK = ∠DHC (hai góc tương ứng)

⇒ ∠DAK = 90⁰

Mà ∠DAB = 90⁰

⇒ ∠DAK + ∠DAB = 180⁰

⇒ B, A, K thẳng hàng

a: \(\widehat{ACB}=30^0\)

b: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AD=AC

AB chung

Do đó: ΔABD=ΔABC

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

26 tháng 3 2017

1) Chứng minh: ΔABD = ΔEBD

Xét  ΔABD và ΔEBD, có:

BD là cạnh huyền chung (gt)

Vậy ΔABD = ΔEBD  (cạnh huyền – góc nhọn)

2) Chứng minh: ΔABE là tam giác đều.

ΔABD = ΔEBD (cmt)

AB = BE

mà  góc B = 60 độ  (gt)

Vậy  ΔABE có  AB = BE và góc 60 độ  nên ΔABE đều.

3) Tính độ dài cạnh BC

Ta có  (gt)

Góc C+B = 90 độ(ΔABC vuông tại A)

Mà BEA = góc B = 60 độ (ΔABE  đều)

Nên góc EAC = góc C ΔAEC cân tại E

EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

17 tháng 12 2021

a: Xét ΔBAD và ΔBHD có 

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔBAD=ΔBHD

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B