K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

a) Ta thấy: \(AB.AC=BC.AH\)

\(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)

\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{BC^2}\)

\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{AB^2+AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)

Áp dụng công thức trên: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)

\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)

Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)

Xét tam giác ABH có: \(AH^2+BH^2=AB^2\Leftrightarrow15^2+BH^2=\left(\frac{15\sqrt{74}}{7}\right)^2\Leftrightarrow BH^2=\frac{16650}{49}-225=\frac{5625}{49}\)

\(\Rightarrow BH=\frac{\sqrt{5625}}{\sqrt{49}}=\frac{75}{7}cm\)

Xét tam giác ACH có: \(AH^2+HC^2=AC^2\Leftrightarrow15^2+HC^2=666\Leftrightarrow HC^2=666-225=441\)

\(\Rightarrow HC=\sqrt{441}=21cm\)

Vậy: \(BH=\frac{75}{7}cm\) và \(HC=21cm\)

b) Chu vi tam giác ABC là: \(AB+AC+BC=\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)

1 tháng 8 2016

A B C H 15 cm

Vì tam giác ABC vuông tại A => góc B + góc C = 90o

Vì tam giác HAC vuông tại H => góc HAC + góc C = 90o

=> góc HAC = góc B

Xét tam giác HAC và tam giác HBA có:

     góc HAC = góc B (cmt)

     góc AHC = góc AHB (=90o)

=> tam giác HAC đồng dạng với tam giác HBA (TH3)

=> \(\frac{AC}{AB}=\frac{AH}{BH}=\frac{HC}{AH}=\frac{7}{5}\)

=> \(HC=15.\frac{7}{5}=21\left(cm\right);HB=15.\frac{5}{7}=\frac{75}{7}\left(cm\right)\)

Sau đó tính AB; AC; BC. Ngại là lắm, làm nốt nhá ._.

1 tháng 5 2023

a. Xét  Δ HBA và  Δ ABC

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\)  Δ HBA \(\sim\)  Δ ABC (g.g) (1)

 Xét  Δ HAC và  Δ ABC:

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

       \(\widehat{C}\) chung

\(\Rightarrow\)  Δ HAC \(\sim\)  Δ ABC (g.g) (2)

Từ (1) và (2) \(\Rightarrow\) Δ HBA  \(\sim\)  Δ HAC 

b. Ta có:  Δ ABC vuông tại A

  Theo đ/lí Py - ta - go:

  BC2 = AB2 + AC2 

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: Δ HBA  \(\sim\)  Δ ABC: 

   \(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\) 

\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HA = 4,8 cm

 \(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\)  \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HB = 3,6 cm

Ta có:  Δ HAC \(\sim\)  Δ ABC

 \(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\) 

\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\) 

\(\Rightarrow\) HC = 6,4cm

c. Ta có: Δ HBA \(\sim\)  Δ HAC

  \(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\) 

AH2 = HB . HC

Ta có : Δ HBA  \(\sim\)  Δ ABC 

    \(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\) 

\(\Rightarrow\) AB2 = HB . BC

 

 

1 tháng 5 2023

Giúp mik với. Cần gấp ạaaaaa

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vơi ΔABC

=>ΔHBA đồng dạng với ΔHAC

b: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

c: AH=căn 9*16=12cm

AB=căn 9*25=15cm

=>AC=20cm

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2

(AB/AC)^2=HB/HC

=>(AB/AC)^2=9/16

=>AB/AC=3/4