Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu AB + AC = 14; AB - AC = 2 thì
\(\Rightarrow\left\{{}\begin{matrix}2AB=14+2=16\\AC=14-AB\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}AB=16:2=8\\AC=14-8=6\end{matrix}\right.\)
Áp dụng định lý Pitago
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)
a) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)
b) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2+AB^2+AC^2\)
\(BC^2=4^2+6^2\)
\(BC=28\left(cm\right)\)
c) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\), ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)
d) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+16=49\)
=>\(AC=\sqrt{49-16}=\sqrt{33}\left(cm\right)\)
b: Gọi M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
G là trọng tâm
Do đó: AG=2/3AM
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=3,5\left(cm\right)\)
=>\(AG=\dfrac{2}{3}\cdot AM=\dfrac{2}{3}\cdot\dfrac{7}{2}=\dfrac{7}{3}\left(cm\right)\)
Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)