Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Gọi O là giao điểm của BE và AF
Xét tam giác AHC có: M là TĐ của HC(gt) , E là TĐ của AC (gt)
\(\Rightarrow ME\)là đường trung bình của tam giác AHC
\(\Rightarrow ME//AH\left(tc\right)\)
Mà \(AH\perp BC\)
\(\Rightarrow ME\perp BC\)
\(\Rightarrow\widehat{BME}=90^0\)
Vì ABFE là hcn (cmt)
\(\Rightarrow BE\)cắt AF tại TĐ mỗi đường (tc) mà O là giao điểm của BE và AF(c.vẽ)
\(\Rightarrow O\)là TĐ của BE và AF
Xét tam giác \(BME\)vuông tại M có đường trung tuyến OM ứng với cạnh huyền BE
\(\Rightarrow OM=\frac{1}{2}BE\left(tc\right)\)
Mà \(BE=AF\)(tc hcn)
\(\Rightarrow OM=\frac{1}{2}AF\)
Xét tam giác AMF có trung tuyến OM ứng với cạnh AF và \(OM=\frac{1}{2}AF\left(cmt\right)\)
\(\Rightarrow\Delta AMF\)vuông tại M
\(\Rightarrow\widehat{FMA}=90^0\)
\(\Rightarrow AM\perp FM\)
Bạn tự vẽ hình nha:
a)Xét tứ giác AIHK, có:
góc A=90 độ(gt)
góc AIH =90 độ( D,H đx qua AB)
góc AKH=90 độ(H,E đx qua AC)
=> AIHK là hình chữ nhật
b)Vì D,H đx qua AB nên AB là đường trung trực của DH
=> AD=AH (1)
Vì H,E đx qua AC nên AC là đường trung trực của HE
=> AH=AE(2)
Từ (1) và (2) => AD=AE(*)
Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến
=> góc DAH=\(2.A_2\)
Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến
=> góc HAE=\(2.A_3\)
Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)
hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)
Từ (*) và (**) => D,E đx qua A (đpcm)
c) Xét tam giác AIH và tam giác AKH, có:
góc AIH= góc AKH=90 độ
AH chung
AI=HK(AIHK là hcn)
=> tam giác AIH=tam giác AKH(ch_cgv)(3)
Xét tam giác ADI và tam giác AHI, có:
\(A_1=A_2\)(AB là p/g của góc DAH)
AI là cạnh chung
góc DIA= góc HIA=90 độ
=> tam giác ADI = tam giác AHI(cgv-gnk)(4)
Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)
Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID
Ta có :
\(S_{AIHK}=AI.AH=s\)
=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)
=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)
\(=4.\frac{s}{2}=2.s\)
Vậy: diện tích \(S_{DHE}=2.s\)
Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!
Chúc bạn học thật giỏi nha!!!!!!!!
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
2) EF?
Xét tam giác ABC vuông tại A, có:
E là trung điểm BC
F là trung điểm AC
=> EF là đường trung bình tam giác ABC
=> EF = \(\dfrac{AB}{2}\)
EF= \(\dfrac{6}{2}\)
EF = 3 cm
b) Xét tam giác ABC vuông tại A.
Theo định lý Pytago, ta có:
\(BC^2=AB^2+AC^2\)
\(10^2=6^2+AC^2\)
\(\Rightarrow AC^2=10^2-6^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\) cm
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8\)
\(\rightarrow S_{ABC}=24\) cm2
c) ABED là hình gì?
Xét tứ giác ABED có:
EF // AB ( Do EF là đường trung bình của tam giác ABC)
Mà: D đối xứng với E qua F (gt)
=> ED//AB (1)
Xét tứ giác ABED có:
\(AB=2EF\) ( Do EF là đường trung bình của tam giác ABC)
Mà: EF = FD (D đối xứng với E qua F (gt))
=> AB = EF + FD
=> AB = ED (2)
Từ (1) và (2) => ABED là hình bình hành (tứ giác có 2 cạnh đối song song và bằng nhau)
2) Trong tam giác ABC , có :
FA = FC ( F là trung điểm của AC )
EB = EC ( E là trung điểm của BC )
=> EF là đường trung bình của tam giác ABC
=> EF = 1/2 AB
=> EF = 1/2 . AB = 1/2 . 6 = 3
Vậy EF = 3 cm
3) ADĐL pytago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
62 + AC2 = 102
36 + AC2 = 100
AC2 = 64
=> AC = \(\sqrt{64}\)= 8
Diện tích tam giác vuông ABC là :
1/2 . AB . AC = 1/2 . 6 . 8 = 24 ( cm2 )
Vậy diện tích tam giác vuông ABC là 24 cm2
4)
Ta có :
FE = FD ( D đối xứng với E qua F )
=> FE = 1/2 ED
Mà : FE = 1/2 AB ( cm câu 2 )
=> DE = AB
Trong tứ giác ABED , có :
DE = AB ( CMT )
DE// AB ( FE // AB )
=> ABED là hbh ( DHNB )