Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)
KH cắt BD tại M
Ta có HI//AC//ND ( cùng \(\perp AB\)) \(\Rightarrow\widehat{C}=\widehat{H_2}\) (đồng vị) và \(\widehat{H_1}=\widehat{H_3}\) (đối đỉnh)
K là trung điểm AC và \(\Delta AHC\) vuông tại H \(\Rightarrow\)KH = KC \(\Rightarrow\Delta KHC\) cân tại K
\(\Rightarrow\widehat{C}=\widehat{H_3}=\widehat{H_1}=\widehat{H_2}\Rightarrow\Delta BHI=\Delta BHM\left(ch-gn\right)\)(có \(\widehat{H_1}=\widehat{H_2}\)HB chung)
\(\Rightarrow\widehat{BIH}=\widehat{BMH}=90^0\Rightarrow HM\perp BD\)
\(\Rightarrow\)BH = BM.MD (hệ thức lượng trong \(\Delta BHD\) vuông tại H)
Mà \(\Delta BMK~\Delta BTD\left(g.g\right)\) ( có \(\widehat{BMK}=\widehat{BTD}=90^0\) và góc B chung)
\(\Rightarrow\)BM.BD = BT.BK = BH
Vì BH =BI.BA (hệ thức lượng trong \(\Delta BHA\) vuông tại H)
\(\Rightarrow\)BT.BK=BI.BA \(\Rightarrow\Delta TBI~\Delta ABK\left(c-g-c\right)\)(có góc B chung và \(\frac{BT}{BI}=\frac{BK}{BA}\))
\(\Rightarrow\widehat{BTI}=\widehat{BAK}=90^0\Rightarrow TI\perp BK\)tại T
\(\Rightarrow\Delta BDT\) nội tiếp (J) có cạnh BD là đường kính \(\Rightarrow\Delta BDT\)vuông tại T
\(\Rightarrow TD\perp BK\) tại T \(\Rightarrow\)Từ T có TI và TD cùng \(\perp\) BK suy ra 3 điểm D, T, I thẳng hàng.