K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

A B C D N M K H

a) Ta có AO là trung tuyến nên OC = OB.

Lại có OD = OA nên ABDC là hình bình hành ( Hai đường chéo cắt nhau tại trung điểm mỗi đường) 

b) Ta thấy \(\Delta CKO=\Delta BHO\) ( Cạnh huyền - góc nhọn) nên CK = BH ( Hai cạnh tương ứng)

Mà CK và BH lại cùng vuông góc với AD nên chúng song song.

Vậy thì tứ giác BHCK là hình bình hành ( Cặp cạnh đối song song và bằng nhau)

c) Do CN // BM; AC // BD nên \(\widehat{ACN}=\widehat{DBM}\Rightarrow\Delta ACN=\Delta DBM\) (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow CN=BM\)

Tứ giác CMBN có cặp cạnh đối song song và bằng nhau nên là hình bình hành.

Vậy BC giao MN tại trung điểm mỗi đường. O là trung điểm BC nên O cũng là trung điểm MN. Vậy M, N, O thẳng hàng.