K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2022

a) \(\Delta ABC=\Delta ADE\left(c.g.c\right)\) suy ra \(BC=DE\)

b) \(\widehat{DAC}=\widehat{BAD}+\widehat{ABC}=90^o+90^o=180^o\) suy ra \(D,A,C\) thẳng hàng. 

Tương tự \(B,A,E\) thẳng hàng. 

Ta có: \(\widehat{BDA}=\widehat{ACE}=45^o\) mà hai góc này ở vị trí so le trong suy ra \(BD\) song song với \(CE\)

d) \(\widehat{DAM}=\widehat{HAC}\) (hai góc đối đỉnh) 

\(\widehat{HAC}=\widehat{ABC}\) (vì cùng phụ với góc \(\widehat{ACB}\))

\(\widehat{ABC}=\widehat{EDA}\) (vì tam giác \(ABC\) bằng tam giác\(ADE\))

suy ra \(\widehat{DAM}=\widehat{EDA}\) suy ra tam giác \(MDA\) cân tại \(M\)

Suy ra \(MA=MD\).

Tương tự ta cũng chứng minh được \(MA=ME\).

Suy ra \(MA=\dfrac{1}{2}\left(ME+MD\right)=\dfrac{DE}{2}\).

A B C D E M N H

a) Xét \(\Delta ABC\)\(\Delta ADE\):

AB=AD(gt)

\(\widehat{BAC}=\widehat{DAE}=90^o\)

AC=AE(gt)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

=> BC=DE ( 2 cạnh tương ứng)

=> Đpcm

b) Ta có \(\Delta ABD\)vuông cân tại A

=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)

\(\Delta AEC\)vuông cân tại A

=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)

=> \(\widehat{BDA}=\widehat{ECA}=45^o\)

Mà 2 góc này ở vị trí so le trong

=> BD//CE

=> Đpcm

c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM

Gọi giao điể của NA và MC là I

Xét \(\Delta NMC\)có:

\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)

Mà 2 đường cao này cắt nhau tại A

=> A là trực tâm của \(\Delta MNC\)

=> \(CA\perp NM\)

=> Đpcm

d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)

=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)

=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)

=> \(\widehat{AED}=\widehat{MAE}\)

=> \(\Delta MAE\)cân tại M

=> MA=ME (1)

Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)

=> \(\widehat{ADE}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)

=> \(\widehat{ADE}=\widehat{DAM}\)

=> \(\Delta DAM\)cân tại M

=> MD=MA (2)

Từ (1) và (2)

=> MA=MD=ME

=> \(MA=\frac{1}{2}DE\)

=> Đpcm

P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>

9 tháng 5 2019

đề bài có thiếu ko bn?

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0