Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
xét ABD và EBD có
BE = BA
AD = DE ( D là góc chung )
BD là cạnh chung
=> ABD = EBD
đúng hay sai thì ae thông cảm ;-;
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py - ta - go)
thay số: \(6^2+8^2=BC^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AB = EB = 6cm ( 2 cạnh tương ứng)
=> EB = 6cm
mà EB + EC = BC ( E thuộc BC )
thay sô: 6 cm + EC = 10 cm
EC = 10 cm - 6 cm
EC = 4 cm
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: góc ADI = góc EDC ( đối đỉnh)
AD = ED ( cmt)
\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)
=> AI = EC ( 2 cạnh tương ứng)
Mà AB = BE ( tam giác ABD = tam giác EBD)
=> AI + AB = EC + BE
=> IB = CB
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh huyền, góc nhọn) (2)
Từ (1); (2) => AD < DC
xin lỗi bn nha! mk ko bít kẻ hình trên này, nên mk ko kẻ cho bn đc đâu
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: góc ABD = góc EBD (gt)
BD là cạnh chung
⇒ΔABD=ΔEBD(ch−gn)⇒Δ���=Δ���(�ℎ−��)
b) Xét tam giác ABC vuông tại A
có: AB2+AC2=BC2��2+��2=��2 ( py - ta - go)
thay số: 62+82=BC262+82=��2
⇒BC2=100⇒��2=100
⇒BC=10cm⇒��=10��
ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)
=> AB = EB = 6cm ( 2 cạnh tương ứng)
=> EB = 6cm
mà EB + EC = BC ( E thuộc BC )
thay sô: 6 cm + EC = 10 cm
EC = 10 cm - 6 cm
EC = 4 cm
c) ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)
=> AD = ED ( 2 cạnh tương ứng)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: góc ADI = góc EDC ( đối đỉnh)
AD = ED ( cmt)
⇒ΔADI=ΔEDC(cgv−gn)⇒Δ���=Δ���(���−��)
=> AI = EC ( 2 cạnh tương ứng)
Mà AB = BE ( tam giác ABD = tam giác EBD)
=> AI + AB = EC + BE
=> IB = CB
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (a)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh huyền, góc nhọn) (b)
Từ (a); (b) => AD < DC.
cre baji
Bài 2:
\(2n-3⋮n+1\)
=>\(2n+2-5⋮n+1\)
=>\(-5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Bài 1:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAM=ΔDEC
=>DM=DC
c: AD+EC=AD+AM>DM