K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB

Xét tam giác ABD và tam giác EBD có:

AB=EB(gt)

góc ABD=góc EBD(vì BD là phân giác góc ABC

Cạnh BD chung

Từ đó suy ra tam giác ABD= tam giác EBD

Suy ra góc ADB=góc EDB( 2 góc t/ ư)

Suy ra DB là phân giác góc ADE

17 tháng 4 2019

d) Gọi H  là giao điểm của AI và BE

Tam giác ACB vuông tại A có I là trung điểm BC

=> AI=CI=BI

=> Tam giác CIA cân tại I

=> \(\widehat{CAI}=\widehat{ACI}\Rightarrow\widehat{EAI}=\widehat{ECI}=\widehat{EBI}\)

Để AI vuông BC thì \(\widehat{EAH}=\widehat{ABH}\)( cùng phụ với góc HAB)

Khi đó \(\widehat{EBI}=\widehat{EBA}\)do vậy nên tam giác EAB =tam giác EIB suy ra AB=AI=1/2 BC

Vậy để AI vuông BE thì tam giác ABC có AB=1/2 BC

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

28 tháng 3 2020

F A D E B C

a) Xét tam giác ABR và tam giác ABD có : 

AE=AD ( gt ) 

AB chung 

=> Tam giác ABE =Tam giác ABD ( 2 cạnh góc vuông ) 

=> BD = BE ( đpcm ) 

b) Ta có : DI là t2 BC 

=> DB = DC => góc DBC = góc DCB 

=> góc BDE = góc DBC  + góc DCB = 2.  góc DCB 

Mà góc BDE = góc BEC  ( sao cho BDE cân ) 

=> góc BEC = 2. góc ECB 

c) Ta có : góc AIB  = góc IAC  + góc ICA 

mà I là trung điểm BC 

=> IA = IB = IC => tam giác IAC cân tại I 

=> góc C1 = góc A=> góc AIB =2. góc C1 

=> góc AIB =  góc AEC 

=> tam giác EIB \(\infty\)tam giác CEB ( góc B chung ; góc E  = góc I ) 

=> góc BFI = góc BCE  hay góc A1 = góc BFI 

mà góc A1 =góc A2 => góc BFI = góc A2 

=> tam giác EFA cân tại E 

=> tam giác AEF cân ( đpcm ) 

28 tháng 3 2020

góc AIB làm sao bằng góc AEC