Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
a) ∆ABC vuông tại B (gt)
⇒ AB ⊥ BC
⇒ BM ⊥ BF
⇒ ∠MBF = 90⁰
Do EM // BC (gt)
⇒ EM // BF
EM // BC (gt)
E là trung điểm của AC (gt)
⇒ M là trung điểm của AB
⇒ EM là đường trung bình của ∆ABC
⇒ EM = BC : 2
F là trung điểm của BC (gt)
⇒ BF = CF = BC : 2
⇒ EM = BF = BC : 2
Tứ giác BMEF có:
EM // BF (cmt)
EM = BF = BC : 2 (cmt)
⇒ BMEF là hình bình hành
Mà ∠MBF = 90⁰ (cmt)
⇒ BMEF là hình chữ nhật
b) Do K đối xứng với B qua E (gt)
⇒ E là trung điểm của BK
Tứ giác BAKC có:
E là trung điểm của BK (cmt)
E là trung điểm của AC (gt)
⇒ BAKC là hình bình hành
Mà ∠ABC = 90⁰ (gt)
⇒ BAKC là hình chữ nhật
c) Do G đối xứng với E qua F (gt)
⇒ F là trung điểm của EG
∆ABC vuông tại B (gt)
E là trung điểm của AC (gt)
⇒ BE là đường trung tuyến ứng với cạnh huyền AC
⇒ BE = CE = AC : 2
Tứ giác BGCE có:
F là trung điểm của BC (gt)
F là trung điểm của EG (cmt)
⇒ BGCE là hình bình hành
Mà BE = CE (cmt)
⇒ BGCE là hình thoi
d) Để BGCE là hình vuông thì BE ⊥ CE
⇒ BE là đường cao của ∆ABC
Mà BE là đường trung tuyến của ∆ABC (cmt)
⇒ ∆ABC cân tại B
Lại có ∆ABC vuông tại B (gt)
⇒ ∆ABC vuông cân tại B
\(a,\left\{{}\begin{matrix}BF=CF\\CE=EA\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC
\(\Rightarrow EF=\dfrac{1}{2}AB;EF//AB\Rightarrow EF//BM\)
Mà \(ME//BF\) nên BMEF là hbh
Mà \(\widehat{ABC}=90^0\) nên BMEF là hcn
\(b,\left\{{}\begin{matrix}BE=EK\\AE=EC\\\widehat{ABC}=90^0\end{matrix}\right.\Rightarrow BAKC\) là hcn
\(c,\left\{{}\begin{matrix}EF=FG\\CF=BF\end{matrix}\right.\Rightarrow BGCE\) là hbh
Mà \(CE=BE\left(t/c.hình.chữ.nhật.BAKC\right)\)
Vậy BGCE là hình thoi
\(d,BGCE\) là hình vuông \(\Leftrightarrow\widehat{CEB}=90^0\Leftrightarrow CE\perp BE\)
\(\Leftrightarrow BE\) là đường cao tam giác ABC
Mà BE là trung tuyến tam giác ABC
Do đó tam giác ABC phải vuông cân
Vậy BGCE là hình vuông \(\Leftrightarrow\) tam giác ABC vuông cân
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật