K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.%28AB%3CAC%29+%C4%91%C6%B0%E1%BB%9Dng+cao+AH.+Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+M+sao+cho+BM%3DBA.+T%E1%BB%AB+M+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC%28N+thu%E1%BB%99c+AC%29+c%2Fm%3A++a%29+tam+gi%C3%A1c+AHN+c%C3%A2n++b%29+BC%2BAH%3EAB%2BAC++c%29+2AC2-BC%3DCH2-BH2&subject=0

k bt giải nhờ mạng |~ mạng giải ~ thông cảm cho

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

28 tháng 2 2019

A B C M H N

Ta có:

BM=BA

=> Tam giác ABM cân tại B

=> \(\widehat{BAM}=\widehat{BMA}\)

mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{BMA}+\widehat{MAC}=90^o\)

mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)

=> \(\widehat{HAM}=\widehat{MAC}\)(1)

Ta có: AH=AN (2)

AM chung (3)

=>Tam giác AHM=ANM

=> \(\widehat{ANM}=\widehat{AHM}=90^o\)

=> AC vuông MN

b) => Tam giác MNC vuông tại N có cạnh huyền MC

=> MC>NC

=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC

=> dpcm

18 tháng 4 2020

Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A