K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
H10 GP
a) Xét ΔBAC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔBAC(đ/n đường trung bình của tam giác)
\(\Rightarrow MN=\frac{1}{2}AC\) và MN//AC(định lí 2 về đường trung bình của tam giác)
Ta có: \(MN=\frac{1}{2}AC\)(cmt)
mà \(AQ=\frac{1}{2}AC\)(Do Q là trung điểm của AC)
nên MN=AQ
Xét tứ giác MHQA có MN=AQ(cmt) và MN//AQ(cmt)
nên MHQA là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{MAQ}\)=90 độ(GT)
nên MHQA là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)
Nối AN
Ta có : N và I đối xứng với nhau qua M(GT)
mà M\(\in BA\left(gt\right)\)
nên I và N đối xứng với nhau qua BA
\(\Rightarrow\)BA là đường trung trực của IN
hay MA là đường trung trực của IN
xét \(\Delta IAN\) có
MA là đường trung trực của IN(cmt)
nên \(\Delta IAN\) cân tại A(định lí tam giác cân)
Ta có: \(\Delta IAN\) cân tại A(cmt)
mà AM là đường trung trực của \(\Delta IAN\)(cmt)
nên AM cũng là đường phân giác của \(\Delta IAN\)(định lí tam giác cân)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{IAN}\)
\(\Rightarrow\) \(\widehat{IAM}=\widehat{NAM}\)
Ta có : N và K đối xứng với nhau qua Q(GT)
mà Q\(\in AC\left(gt\right)\)
nên K và N đối xứng với nhau qua CA
\(\Rightarrow\)CA là đường trung trực của KN
hay QA là đường trung trực của KN
xét \(\Delta NAK\) có
QA là đường trung trực của KN(cmt)
nên \(\Delta NAK\) cân tại A(định lí tam giác cân)
Ta có: \(\Delta NAK\) cân tại A(cmt)
mà AQ là đường trung trực của \(\Delta NAK\)(cmt)
nên AQ cũng là đường phân giác của \(\Delta NAK\)(định lí tam giác cân)
\(\Rightarrow\) AQ là tia phân giác của \(\widehat{KAN}\)
\(\Rightarrow\) \(\widehat{NAQ}=\widehat{KAQ}\)
Ta có: \(\widehat{IAK}=\widehat{IAM}+\widehat{MAN}+\widehat{NAQ}+\widehat{KAQ}\)
\(=2\cdot\widehat{MAN}+2\cdot\widehat{QAN}\)
\(=2\left(\widehat{MAN}+\widehat{NAQ}\right)=2\cdot90\) độ=180 độ
vậy: 3 điểm I,A,K thẳng hàng (1)
c) Ta có: AI=AN(do ΔAIN cân tại A)
AN=AK(do ΔANK cân tại A)
Do đó: AI=AK(2)
Từ (1) và (2) suy ra: A là trung điểm của IK
hay I và K đối xứng với nhau qua A