Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)
a: Vì AM là trung tuyến
nên AM=BM
=>góc MAB=góc MBA
=>tan B=tan AMB và sin B=0,8
=>cos B=0,6
=>tan B=4/3
b: \(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(cm^2\right)\)
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ CM=\dfrac{AC^2}{BC}=3,6\left(cm\right)\\ AM=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\ \dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{3}\\ \Rightarrow BD=\dfrac{4}{3}DC\\ \text{Mà }BD+DC=BC=10\\ \Rightarrow\dfrac{7}{3}DC=10\\ \Rightarrow DC=\dfrac{30}{7}\left(cm\right)\\ \Rightarrow DM=DC-CM=\dfrac{30}{7}-3,6=\dfrac{24}{35}\left(cm\right)\\ \Rightarrow S_{AMD}=\dfrac{1}{2}AM\cdot DM=\dfrac{1}{2}\cdot\dfrac{24}{35}\cdot4,8=\dfrac{288}{175}\left(cm^2\right)\)
tôi ko biết