Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB:=a
AC:=b
ta có
BD^2=a^2+(1/2b)^2
CE^2=(1/2a)^2+b^2
BD^2+CE^2=(a^2+b^2)5/4=5/4BC^2(dpcm)
a, Vì △ABC cân tại A => AB = AC
Xét △ABD vuông tại D và △ACE vuông tại E
Có: BAC là góc chung
AB = AC (cmt)
=> △ABD = △ACE (ch-gn)
c, Ta có: AE + BE = AB và AD + DC = AC
Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE)
=> BE = DC
Xét △HEB vuông tại E và △HDC vuông tại D
Có: BE = DC (cmt)
EBH = DCH (△ABD = △ACE)
=> △HEB = △HDC (cgv-gnk)
=> BH = HC (2 cạnh tương ứng)
=> △BHC cân tại H
c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C
Chưa vẽ dc hình mà giải dc rồi à? :)) Nhưng cái chỗ BC cắt CE tại I nó..
nó sao
minhfvex hình và giải rồi nhưng thầy bảo là hình sai nhưng bài thì đúng
a) Xét tam giác ABD và tam giác ACE
BDA = CEA = 90 độ
AB = AC
chung góc A
=>.Tam giác ABD = Tam giác ACE(ch-gn)
=> BD = CE (2 cạnh tương ứng)
b)=> AD = AE ( 2 cạnh tương ứng)
Mà AB = AC
=> BE = CD
Xét tam giác EBC và tam giác DBC:
BE = CD
BD = CE
BC chung
=>Tam giác EBC = Tam giác DBC (c-c-c)
=>BH = CH(2 cạnh tương ứng)
=>Tam giác BHC cân
c)BE,CD là các đường cao của tam giác ABC
Mà BE và CD cắt nhau ở H
=> AH là đường cao của tam giác ABC
Gọi I là giao điểm của AH và BC
Xét tam giác BAH và tam giác CAH
AIB = AIC = 90 độ
AB = AC
AI chung
=>Tam giác BAH = Tam giác CAH (ch-cgv)
=>BI = CI ( 2 cạnh tương ứng)
Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC
=> AI là đường trung trực của BC
=>AH là đường trung trực của BC
d)DKC + CDK + KCD =180 độ
DKC = 90 độ - KCD
ECB + BEC + CBE = 180 độ
BEC =90 độ - CBE
Mà EBC = DCB
=> ECB > DCK
=>90 độ - ECB < 90 độ - DCK
=>ECB < DKC
a) Xét tam giác ABD và tam giác ACE BDA = CEA = 90 độ AB = AC chung góc A =>.Tam giác ABD = Tam giác ACE(ch-gn) => BD = CE (2 cạnh tương ứng) b)=> AD = AE ( 2 cạnh tương ứng) Mà AB = AC => BE = CD Xét tam giác EBC và tam giác DBC: BE = CD BD = CE BC chung =>Tam giác EBC = Tam giác DBC (c-c-c) =>BH = CH(2 cạnh tương ứng) =>Tam giác BHC cân c)BE,CD là các đường cao của tam giác ABC Mà BE và CD cắt nhau ở H => AH là đường cao của tam giác ABC Gọi I là giao điểm của AH và BC Xét tam giác BAH và tam giác CAH AIB = AIC = 90 độ AB = AC AI chung =>Tam giác BAH = Tam giác CAH (ch-cgv) =>BI = CI ( 2 cạnh tương ứng) Mà AH là đường cao của tam giác ABC =>AI là đường cao của tam giác ABC => AI là đường trung trực của BC =>AH là đường trung trực của BC d)DKC + CDK + KCD =180 độ DKC = 90 độ - KCD ECB + BEC + CBE = 180 độ BEC =90 độ - CBE Mà EBC = DCB => ECB > DCK =>90 độ - ECB < 90 độ - DCK =>ECB < DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC