K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC

28 tháng 2 2016

ta dựa theo định lí ba đường trung tuyến của một tam giác cùng đi qua 1 điểm. Điểm đó cách mỗi đỉnh bằng \(\frac{2}{3}\)độ dài đường trung tuyến.

9*2/3=6

12*2/3=8

vậy ta áp dụng định lí py ta go 

AB^2+AC^2=BC^2

=> 6^2+8^2=100

căn của 100 là 10 

Vậy BC=10

4 tháng 3 2023

Câu này làm thế nào vậy mn

giúp mình với

 

4 tháng 3 2023

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

5 tháng 1 2018

A B C D E

Áp dụng định lý pytago vào tam giác vuông ABD ta có : \(BD^2=AB^2+AD^2=AB^2+\left(\dfrac{1}{2}AC\right)^2=AB^2+\dfrac{1}{4}AC^2\)(1)

Áp dụng định lý pytago vào tam giác vuông AEC ta có : \(EC^2=AE^2+AC^2=\left(\dfrac{1}{2}AB\right)^2+AC^2=\dfrac{1}{4}AB^2+AC^2\)(2)

Từ (1);(2) \(\Rightarrow BD^2+EC^2=AB^2+\dfrac{1}{4}AC^2+\dfrac{1}{4}AB^2+AC^2=\dfrac{5}{4}AB^2+\dfrac{5}{4}AC^2\)(3)

Áp dụng định lý pytago vào tam giác vuông ABC ta có : \(BC^2=AB^2+AC^2\Rightarrow\dfrac{5}{4}BC^2=\dfrac{5}{4}AB^2+\dfrac{5}{4}AC^2\)(4)

Từ (3);(4) \(\Rightarrow BD^2+CE^2=\dfrac{5}{4}BC^2\) (đpcm)

17 tháng 3 2023

giải hộ

 

3 tháng 2 2016

gọi G là giao điểm của BD và CE

ta có

BG=2/3 BD suy ra BG=2/3 . 9= 6 cm 

CG=2/3 CE suy ra CG=2/3 . 12= 8 cm

xét tam giác CGB vuông tại G ta có 

CB^2= CG^2 + BG^2 =8^2 + 6^2 =64 + 36

CB^2=100 suy ra CB =10 cm

3 tháng 2 2016

jkfhgjksfhklghd