Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
b: Xét tứ giác ACBD có
M là trung điểm chung của AB và CD
=>ACBD là hbh
=>BC//AD
c: AC+BC=BC+BD>CD=2CM
a,
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(10^2=AB^2+6^2\)
=> AB = 8 (cm)
b,
Xét Δ MAC và Δ MBD, có :
MD = MC (gt)
MA = MB (M là trung tuyến của AB)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
=> Δ MAC = Δ MBD (c.g.c)
c,
Ta có : AM = 2AB
=> AM = 4 (cm)
Xét Δ AMC vuông tại A, có :
\(CM^2=AM^2+AC^2\) (Py - ta - go)
=> \(CM^2=4^2+6^2\)
=> CM ≈ 7,2 (cm)
Ta có :
AC + BC = 6 + 10 = 16 (cm)
2CM ≈ 7,2 x 2 ≈ 14,4 (cm)
=> AC + BC > 2CM
a: AB=căn 10^2-6^2=8cm
=>BM=4cm
b: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
c: AC+BC=BD+BC>CD=2CM
a: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
b: AC+BC=BD+BC>CD=2CM
a: AB=8cm
b: Xét ΔMAC và ΔMBD có
MA=MB
\(\widehat{AMC}=\widehat{BMD}\)
MC=MD
Do đó: ΔMAC=ΔMBD
a) Xét tam giác ABC vuông tại A:
\(AB^2+AC^2=BC^2\) (Định lí Pytago).
Thay: \(AB^2+6^2=10^2.\Leftrightarrow AB=\sqrt{10^2-6^2}=8\left(cm\right).\)
b) CM là đường trung tuyến của tam giác ABC vuông tại A (gt).
\(\Rightarrow\) M là trung điểm của AB.
Xét tam giác MAC và tam giác MBD:
+ MA = MB (M là trung điểm của AB).
+ MC = MD (gt).
+ \(\widehat{AMC}=\widehat{BMD}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBD (c - g - c).
Học hình fải biết vẽ hình chứ bạn :333 mấy bài ngắn này mình hog hay vẽ cho lém nên tự vẽ nhaaaa :33
Cho mik xin hình vẽ với ạ