Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=BH^2\)
hay \(BE=\dfrac{BH^2}{BA}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{CH^2}{CA}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
b: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
e: \(BE\cdot CF\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)
\(=EF^3\)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}\\CH=\dfrac{AC^2}{BC}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=HB^2\)
\(\Leftrightarrow BF=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{AB^4\cdot AC}{AC^4\cdot AB}=\left(\dfrac{AB}{AC}\right)^3\)
a: \(BD\cdot CE\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)
AB=AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow AH\) đồng thời là phân giác và trung tuyến
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BAH}=\dfrac{1}{2}\widehat{A}=60^0\\BH=\dfrac{1}{2}BC=6\end{matrix}\right.\)
Trong tam giác vuông ABH:
\(tan\widehat{BAH}=\dfrac{BH}{AH}\Rightarrow AH=\dfrac{BH}{tan\widehat{BAH}}=\dfrac{6}{tan60^0}=2\sqrt{3}\)
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)