Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) trong tam giác ABC có: Â + B + C = 1800 (đ/lý)
=> 900 + B + 300 = 1800
=> B = 1800 - (900 + 300)
B = 600 (1)
xét 2 tam giác vuông ABH và ADH có:
AH chung
HD = HB (gt)
=> tam giác ABH = tam giác ADH (ch-cgv)
=> AB = AD (cạnh tương ứng)
=> tam giác ABD cân tại A (2)
từ (1) và (2) => tam giác ABD là tam giác đều
a) ủa câu a) có sai đề ko zậy bn??????????????????
a:
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc HDA=góc EDC
=>ΔDHA=ΔDEC
=>DH=DE
a) xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, gocs C=30 độ
=> góc B=90 độ = 90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều
b) tam giác ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tam giác ADC có góc DAC=góc DCA=30
Vậy tam giác ADC cân tại D=> AD=DC
Xét tam giác ADH và tam giác CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tam giác ADH=tam giác CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
a, xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, godc C=30 độ
=> góc B=90 độ-gócc
=90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều