K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

A B C H

Có: góc ABC + góc BAH = 900

      góc HAC + góc BAH = 900

=> góc ABC = góc HAC

Xét tam giác AHC và tam giác BAC có:

     góc ABC = góc HAC (chứng minh trên)

     góc AHC = góc BAC (=900)

=> tam giác AHC đồng dạng với tam giác BAC

\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)

Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)

                                                         Vậy HB = 75/7 cm , HC = 21cm

3 tháng 8 2019

\(HB.HC=15^2=225\)

Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)

3 tháng 8 2019

cảm ơn ạ

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

a: AB=căn 4,5*12,5=7,5cm

AC=căn 8*12,5=10cm

b: HB=(13+5)/2=9cm

HC=13-9=4cm

AB=căn 9*13=3 căn 13cm

AC=căn 4*13=2căn 13cm

 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)

nên \(\dfrac{HB}{HC}=\dfrac{25}{49}\)

hay \(HB=\dfrac{25}{49}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2=15^2:\dfrac{25}{49}=441\)

\(\Leftrightarrow HC=21\left(cm\right)\)

\(\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)

5 tháng 9 2021

thank you bạn đẹp trai

Xét tam giác AHB đồng dạng với tam giác CHA góc-góc ( góc AHB=góc CHA; góc BAH = góc C do cùng phụ với góc B)
=> k= AH/HC=AB/AC=HB/AH
AB/AC=5/7
=>AB/AC=HB/AH hay 5/7=HB/15 -> HB = 75/7
AH/HC=AB/AC hay 15/HC=5/7 -> HC =21

25 tháng 7 2021

Ta có : \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

 * Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{225}=\frac{1}{\left(\frac{5}{7}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=3\sqrt{74}\)cm 

\(\Rightarrow AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\)

\(\Rightarrow BC=\frac{AB.AC}{AH}=\frac{3\sqrt{74}.\frac{15\sqrt{74}}{7}}{15}=\frac{222}{7}\)cm 

Áp dụng định lí Pytago tam giác ABH vuông tại H 

\(AB^2=BH^2+AH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{75}{7}\)cm 

\(\Rightarrow HC=BC-BH=\frac{222}{7}-\frac{75}{7}=\frac{147}{7}=21\)cm