K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

Mk mới lớp 7 thui T_T

24 tháng 4 2016

mình mới có hc lớp 6 à hihi!!!!!

3 tháng 5 2019

a) Xét tam giác HBA và tam giác ABC có

góc H = góc A (=90 độ)

góc ABC chung

suy ra tam giác HBA đồng dạng với tam giác ABC

b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có

BC^2= AB^2+AC^2

BC^2=12^2+16^2

BC^2 = 400

BC=căn 400 = 20 cm

+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)

suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)

suy ra HA/16=12/20

SUY RA HA=(16*12)/20 =9,6cm

c) ta có DE là tia phân giac

suy ra AE/EB=AD/BD 1

VÌ DF là tia p/g

suy ra FC/FADC/AD 2

TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA

suy ra EA/EB*DB/DC*FC/FA =1(đfcm)

3 tháng 5 2019
https://i.imgur.com/uPsEWVL.png

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

18 tháng 1 2018

Sửa :P và Q là trung điểm BH và HC nhé

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD

4 tháng 11 2018

O la giao diem cua AM va EF nha lam on jup minh lam cau 3voi