K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BC=căn 12^2+16^2=20

ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC

=>BH=12^2/20=7,2cm; CH=20-7,2=12,8cm

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=5,4cm\\CH=9,6cm\end{matrix}\right.\)

20 tháng 7 2021

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)

13 tháng 10 2019

tính bc

tính bd,dc

tính hd,hb,hc

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

12 tháng 7 2016

Ta có: BC2 = AB2 + AC2 \(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)

\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}=\frac{12^2}{20}=\frac{36}{5}=7,2cm\)

\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{16^2}{20}=\frac{64}{5}=12,8cm\)

Vì AD là phân giác góc BAC nên ta có :

\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\Rightarrow DC=\frac{4}{7}BC=\frac{4}{7}.20=\frac{80}{7}cm\)

=> HD = BC - (HB + DC) \(=20-\left(7,2+\frac{80}{7}\right)=\frac{48}{35}cm\)

                                  Vậy HB = 7,2cm ; HC = 12,8cm ; HD = 48/35cm

12 tháng 7 2016

Ngọc Vĩ ngủ trễ ko tôt đâu

b: Ta có: \(\widehat{ADC}+\widehat{HAD}=90^0\)

\(\widehat{CAD}+\widehat{DAB}=90^0\)

mà \(\widehat{HAD}=\widehat{DAB}\)

nên \(\widehat{ADC}=\widehat{CAD}\)

Xét ΔADC có \(\widehat{ADC}=\widehat{CAD}\)

nên ΔADC cân tại C

5 tháng 9 2021

Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm 

=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm 

Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm 

=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:
Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất tia phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$

$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm) 

Theo hệ thức lượng của tam giác vuông:

$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm) 

$CH=BC-HB=20-7,2=12,8$ (cm) 

$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Hình vẽ:

8 tháng 7 2018

Áp dụng định lí Pi - ta  go \(\Delta ABC\)vuông tại A :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Áp dụng hẹ thức về cạnh và đường cao cho \(\Delta ABC\) có đường cao AH :

AB.AC=BC.AH

=> AH = AB.AC/BC

=> AH = 12.16/20

=> AH=9, 6( cm )

Ta có : \(\frac{AB^2}{AC^2}=\frac{BC.BH}{BC.CH}=\frac{BH}{CH}=\frac{12^2}{16^2}=\frac{9}{16}\)

\(\Rightarrow CH=\frac{16BH}{9}\)

Áp dụng hệ thức về cạnh và đường cao cho tam giác ABC  và đường cao AH :

\(\Rightarrow BH.\frac{16BH}{9}=AH^2\)

=> BH2 = \(AH^2:\frac{16}{9}=9,6^2:\frac{16}{9}=51,84\)

=> BH = 7,2 ( cm )

=> CH = AH2 / BH = 12,8 ( cm )

Áp dụng tính chất của tia phân giác tam giác ABC phân giác AD

BD/AB=DC/AC

Áp dụng dãy tỉ số bằng nhau :

BD/AB=CD/AC=BD+CD/AB+AC = BC/AB+AC=5/7

=> DC/AC=5/7

=> DC = 5AC/7

=> DC = 80/7 ( cm )

Mà HD + HC = CD

=> HD = 80/7-12,8 = 

8 tháng 7 2018

Áp dụng định lý Pytago ta có:

           \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=\sqrt{12^2+16^2}=20\)

Áp dụng hệ thức lượng ta có:

          \(AB^2=HB.BC\)

\(\Rightarrow\)\(HB=\frac{AB^2}{BC}=7,2\)

\(\Rightarrow\)\(HC=BC-HB=12,8\)

AD là phân giác nên ta có:  \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)

suy ra:  \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)  \(\Rightarrow\)\(HD=DB-HB=1\frac{13}{35}\)

            \(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)