Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :
a) 2 tam giác : AMB=ADC
b) A là trung điểm của MN.
a.Ta có : ΔABC vuông cân tại A (gt)
Mà MB⊥BC,NC⊥BC
→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)
Lại có : AD⊥MN,AB⊥AC
→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)
→ˆMAB=ˆDAC
Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)
→AM=AD,BM=DC
b.Tương tự câu a ta chứng minh được AN=AD,CN=BD
→AM=AN→A là trung điểm MN
c.Từ a,b →BC=BD+DC=CN+BM
d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A
Tương tự ΔAND vuông cân tại A
→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D
a) Có ΔABC vuông cân tại
⇒ Góc ABC = Góc ACB =45°
mà Bx ⊥ BC
suy ra góc ABM =45°
Xét ΔADC và ΔABM có :
Góc MBA = Góc ACD = 45°
AB = AC ( gt )
MÂB=DÂC ( cùng phụ với BÂD )
suy ra ΔADC = ΔABM( g - c - g )
⇒ AM = AD ( 2 cạnh tương ứng )