K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ΔDCA đồng dạng với ΔACB

Xét ΔDCA vuông tại D và ΔACB vuông tại A có

\(\widehat{DCA}\) chung

Do đó: ΔDCA~ΔACB

b: Xét ΔDBA vuông tại D và ΔABC vuông tại A có

\(\widehat{DBA}\) chung

Do đó: ΔDBA~ΔABC

c: Xét ΔDCA vuông tại D và ΔDAB vuông tại D có

\(\widehat{DCA}=\widehat{DAB}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔDCA~ΔDAB

13 tháng 5 2015

mình không biết vẽ hình nên chỉ giải cho bạn thôi nha

a) Xét tam giác DBA và Tam giác ABC có

D=A=90 độ

B góc chung

vậy tam giác DBA đồng dạng với tam giác ABC (g.g)

b) 

vì Góc A = 90  độ nên góc B + góc C = 90 độ

mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ

<=> 3Góc C=90 độ => Góc C = 30 độ

Góc B=60 độ

mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ

Xét Tam giác ABE và Tam giác ACB có

    Góc A chung

    góc ABE= ECB(cmt)

vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)

=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)

c) Vì  tam giác DBA đồng dạng với tam giác ABC

=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)

Tam giác ABD có BF là phân giác góc B, ta có

     \(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)

Tam giác ABC có BE là phân giác góc B, ta có:

     \(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)

Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)

 

 

 

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA\(\sim\)ΔCEB

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)

Do đó: ΔHEA\(\sim\)ΔHDB

Suy ra: HE/HD=HA/HB

hay \(HE\cdot HB=HD\cdot HA\)

a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có

góc B chung

=>ΔBHE đồng dạngvơi ΔBAH

b: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

c,d: Xét ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC và CH^2=CF*CA

e: AE*AB=AF*AC=AH^2

=>AE/AC=AF/AB

mà góc EAF chung

nên ΔAEF đồng dạng với ΔACB

31 tháng 7 2016

Bạn gì ơi, làm quen nha ^^

31 tháng 3 2019

A B C D 6 8 E H

a)BC=AB2+AC2  ( định lí Pitago)

=> BC=10

Dựa vào t/c đường phân giác ta có

AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2

=> AD= 3; DC=5

=>AD/DC= 3/5

b)có GÓC A =GOC E= 90 ĐỘ

VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)

=>TG ABD đồng dạng tam giác EBC(gg)

c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

d) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 
10 tháng 7 2021

mk cần phần C và D bn có thể diễn giải chi tiết được không