K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a) +Xét tứ giác CRSM có: góc RCS= góc CSR= góc CRS = 90độ

=> Tứ giác CRSM là hcn (vì tứ giác có 3 góc vuông)

=>CM = RS (vì hcn có 2 đg chéo = nhau)

=>CM và RS cắt nhau tại trung điểm của mỗi đường (T/c đg chéo hcn)

6 tháng 8 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Bùi Khánh Chi - Toán lớp 8 - Học toán với OnlineMath

30 tháng 10 2023

Ta có; ΔABC vuông cân tại C

mà CD là đường trung tuyến

nên CD\(\perp\)AB và CD là phân giác của \(\widehat{ACB}\)

=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{90^0}{2}=45^0\)

Gọi O là giao điểm của CM với FE

Xét tứ giác CEMF có

\(\widehat{CEM}=\widehat{CFM}=\widehat{FCE}=90^0\)

=>CEMF là hình chữ nhật

=>CM cắt EF tại trung điểm của mỗi đường và CM=EF

=>O là trung điểm chung của CM và EF và CM=EF

=>OM=OC=OE=OF
=>O là tâm đường tròn ngoại tiếp tứ giác CFME

\(\widehat{CEM}=\widehat{CFM}=\widehat{CDM}=90^0\)

Do đó: C,E,M,F,D cùng thuộc đường tròn đường kính CM

=>C,E,M,F,D cùng thuộc (O)

=>D thuộc (O)

Xét (O) có

ΔDFE nội tiếp

FE là đường kính

Do đó: ΔDFE vuông tại D

Xét tứ giác FDEC có

\(\widehat{FCE}+\widehat{FDE}=180^0\)

=>FDEC là tứ giác nội tiếp

=>\(\widehat{DFE}=\widehat{DCE}=\widehat{DCA}=45^0\)

Xét ΔDFE vuông tại D có \(\widehat{DFE}=45^0\)

nên ΔDFE vuông cân tại D

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: ΔABD=ΔACE

=>góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

tên các điểm bn tự đặt nha

a) ta có CK // HB ( do cùng vuông góc với AC)

              CH// BK (do cùng vuông góc với AB)

tứ giác BKCH có  CK // HB ,CH// BK => BKCH là hbh

b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)

                      A+K = 90

                          K= 30   

c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK

d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM

  tam giác AKH có AH//OM, KM=MH =>AO=OK (1)

từ O kẻ OS sao cho SA=SB

tam giác AKB có SA=SB, AO=OK => OS//BK 

 lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC

=> OA=OB=OC(2)

từ 1 và 2 => OA=OB=OC=OK

a: Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó: BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay M,H,D thẳng hàng

Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên EM=BC/2(1)

Ta có: ΔFBC vuông tại F

mà FM là đường trung tuyến

nên FM=BC/2(2)

Từ (1) và (2) suy ra ME=MF

hay ΔEMF cân tại M