Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai tam giác ABC và DBC, ta có:
BA = BD (bán kính của (B; BA))
CA = CD (bán kính của (C; CA))
BC chung
Suy ra: ∆ ABC = ∆ DBC (c.c.c)
Suy ra: CD ⊥ BD tại D
Vậy CD là tiếp tuyến của đường tròn (B; BA)
Ta có: đường tròn (B, BA) và (C, CA)
mà chúng cắt nhau tại D
=> BA = BD ; CA = CD
Xét \(\Delta ABC\) và \(\Delta DBC\) có:
AB = BD (cmt)
AC = CD (cmt)
BC: cạch chúng
\(\Rightarrow\Delta ABC=\Delta DBC\left(c.c.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{D}\)
mà \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{D}=90^o\)
\(\Rightarrow CD\perp\) với bán kính BD tại D
\(\Rightarrow\) CD là tiếp tuyến của đường tròn (B)
a ) OA \(\perp\)BC
BC // AD
=> OA \(\perp\)AD => AD là tiếp tuyến tại A của đường tròn
b) ON cắt AC tại trung điểm của AC ( ON \(\perp\)AC sử dụng đường kính và dây đường tròn )
Lại có : ABCD là hình bình hành
=> BD cắt AC tại trung điểm của AC
=> Ba đường thẳng AC, BD,ON đồng quy
Chỉ là cách làm thôi bạn tự bổ sung nhé !
a/ Ta có
\(AD\perp OA\) (AD là tiếp tuyến)
O là tâm đường tròn ngoại tiếp \(\Delta ABC\) => AO là trung tuyến của \(\Delta ABC\Rightarrow BC\perp AO\) (trong tg cân đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao)
=> AD//BC (cùng vuông góc với OA); mà AD=BC (gt) => ABCD là hình bình hành ( Tứ giác có 1 cặp cạnh đối // và bằng nhau thì tứ giác đó là hình bình hành)
b/ Do ABCD là hình bình hành nên AC cắt BD tại trung điểm mỗi đường
Mặt khác ta cũng có OM đi qua trung điểm của AC (Hai tiếp tuyến cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn thì vuông góc và chia đôi dây cung nối 2 tiếp điểm)
=> AC; BD; OM đồng quy
) Có:
a)
Vì vậy AD = BC và AD//BC nên tứ giác ABCD là hình bình hành.
b) Theo tứ giác ABCD là hình thành nên BD và AC cắt nhau tại trung điểm của mỗi đường.
Theo tính chất của hai tiếp tuyến cắt nhau thì MA=MC và OM là tia phân giác góc AMC.
AM = MC nên tam giác AMC cân tại M và MO là tia phân giác của tam giác AMC nên OM cũng đi qua trung điểm của AC.
Suy ra ba đường thẳng AC, BD, OM đồng quy.
c) vì OK vg vs BC=>..............................................
d)
a: Xét (B) có
AC⊥AB tại A
nên AC là tiếp tuyến của (B;BA)
a: Xét (B) có AC⊥AB tại A
nên AC là tiếp tuyến của (B;BA)