K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Câu hỏi của Maii Tômm (Libra) - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

13 tháng 3 2018

nhưng bài này lớp 7 mà

1 tháng 3 2019

\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|

\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)

\(B=\frac{1}{4}.4.2.1.2\)

\(B=4\)

1) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

5 tháng 4 2021

bn trả lời mấy ý còn lại hộ mk vs

 

 

24 tháng 1 2019

1. A B C D E

Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC. 

Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)

Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)

(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)

Mà \(\widehat{ADB}=\widehat{ABD}\)

=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)

=> AC>AB

27 tháng 1 2019

A B C H

Xét tam giác ABC vuông tại A

Theo BĐT tam giác: \(AB< AC+BC\)

Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)

\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)

Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)

Hay \(AB+AC< AH+2CH+BH+AC\)

Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)

Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)

Hay \(AB+AC< 2AH+2CH+BC\)

Tới đây bí rồi.

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho