Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn trên làm đúng rồi đó chắc chắn 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
Ta có: \(\Delta ABC\) vuông cân tại A
\(\Rightarrow\hept{\begin{cases}\widehat{BAC}=90^0\\AB=AC\\\widehat{ABC}=\widehat{ACB}=45^0\end{cases}}\)
Lại có: \(\hept{\begin{cases}\widehat{BAH}+\widehat{HAC}=90^0\\\widehat{KCA}+\widehat{HAC}=90^0\end{cases}}\)
\(\Rightarrow\widehat{BAH}=\widehat{KCA}\)
Xét \(\Delta ABH\) và \(\Delta CAK:\)
\(\hept{\begin{cases}\widehat{AHB}=\widehat{CKA}=90^0\\AB=AC\left(cmt\right)\\\widehat{BAH}=\widehat{KCA}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ABH=\Delta CAK\left(ch+gn\right)\)
\(\Rightarrow AH=CK\)
Có: \(\hept{\begin{cases}AM⊥MB\\\widehat{ABM}=45^0\end{cases}}\)
\(\Rightarrow\widehat{MAB}=45^0=\widehat{ACM}\)
\(\Rightarrow\widehat{BAH}-\widehat{BAM}=\widehat{KCA}-\widehat{ACM}\)
\(\Rightarrow\widehat{HAM}=\widehat{KCM}\)
Ta lại có: \(\hept{\begin{cases}AM⊥MC\\\widehat{AMC}=45^0\end{cases}}\)
\(\Rightarrow\widehat{MAC}=45^0\)
\(\Rightarrow\Delta AMC\) vuông cân.\(\Rightarrow MA=MC\)
Xét \(\Delta AMH\) và \(\Delta CMK:\)
\(\hept{\begin{cases}AH=KC\left(cmt\right)\\\widehat{HAM}=\widehat{KCM}\left(cmt\right)\\AM=CM\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta AMH=\Delta CMK\left(c.g.c\right)\)
\(\Rightarrow MK=MH.\)
Bạn vẽ hình ra đã rồi nhìn lời giải nhá
a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC
TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)
Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2)
Từ (1) và (2) -> g' ABH = g' CAH
Xét TG' AHB và TG' AKC có
g' AHB = g' AKC ( = 90 )
AB = AC ( gt )
g' HAB = g' KAC ( cmt )
-> TG' AHB = TG' AKC ( ch - gn )
-> BH = Ak
a. Xét tam giác BAH và tam giác CAK
BHA= CKA=90*
BA=AC (gt)
BAH=CAK ( cùng phụ với HAC)
=> tam giác BAH=tam giác CAK( ch-gn)
=> BH=AK (2 cạnh tương ứng)
b. Gọi I là giao điểm của AM và KC
Vì BH vg AH; Ck vg AH => BH// CK
=> HBM=KCM (so le trong )
Do tam giác IMC vuông tại M => MIC+MCI= 90*
Lại có tam giác AKI vuông tại K nên KAI+KIA=90*
Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH
Xét tam giác BHM và tam giác AKM
BH= AK ( theo câu a)
HBM= AKM( c/m trên)
BM = AM ( AM là trung tuyến tam giác vuông)
=> tam giác BHM= tam giác AKM(cgc)
c. Theo câu b,
tam giác BHM= tam giác AKM(cgc)
=> HM= KM(2 cạnh tương ứng)
Ta có BMK+KMA=BMA=90*
Mà HMB= KMA=> BMK+HMB=90*=HMK
Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
a, BH = AK:
Ta có: ΔABC vuông cân tại A.
=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)
Cũng có: BH ⊥ AE.
=> ΔBAH vuông tại H.
=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)
Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.
Xét ΔBAH và ΔACK có:
+ AB = AC (ΔABC cân)
+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)
+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)
=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng)
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]
Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]
AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]
Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.
Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.
Xét ΔMBH và ΔMAK có:
+ MA = MB (cmt)
+ HBMˆ=MAKˆHBM^=MAK^ (cmt)
+ BH = AK (câu a)
=> ΔMBH = ΔMAK (c - g - c)
c, ΔMHK vuông cân:
Xét ΔAMH và ΔCMK có:
+ AH = CK (ΔABH = ΔCAK)
+ MH = MK (ΔMBH = ΔMAK)
+ AM = CM (AM là trung tuyến)
=> ΔAMH = ΔCMK (c - c - c)
=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)
mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o
=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o
hay HMKˆ=90oHMK^=90o.
ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.
=> ΔHMK vuông cân tại M.
chúc bạn học tốt
Giúp trước câu a),mấy câu kia để tối đi học về làm tiếp,nhớ nhắc mình. Vì mình còn phải suy nghĩ cách trình bày!
a) Dễ thấy: \(\widehat{ABH}=\widehat{KAC}\) (do cùng phụ \(\widehat{BAH}\))
Xét \(\Delta BAH\)và \(\Delta ACK\) có:
AB = AC (gt)
\(\widehat{ABH}=\widehat{KAC}\) (chứng minh trên)
\(\widehat{BHA}=\widehat{AKC}\left(=90^o\right)\) (gt)
Do đó \(\Delta BAH=\Delta ACK\) (cạnh huyền - góc nhọn)
Do đó AH = CK (hai cạnh tương ứng)
Giúp luôn câu b)
b) Ta có: \(\Delta BAH=\Delta ACK\) (chứng minh trên câu a)
Mà tam giác ABC vuông cân nên \(\widehat{ABC}=45^o;\widehat{MAC}=45^o\Rightarrow\widehat{HBM}=\widehat{KAM}\)
Lại có BM = AM (= 1/2 BC)
Do đó tam giác MBH = tam giác MAK (c.g.c)
Suy ra MH = MK; góc BMH = góc AMK
Do vậy góc BMA = HMK = 90o
Do đó tam giác MHK vuông cân (tại M)