Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc DBM=góc ECN(=góc ACB)
Do đó; ΔMDB=ΔNEC
=>MD=NE
Xét tứ giác MDNE có
MD//NE
MD=NE
Do đó: MDNE là hình bình hành
=>MN cắt ED tại trung điểm của mỗi đường
=>I là trung điểm chung của MN và ED
b:
Kẻ AH vuông góc BC tại H
ΔABC cân tại A
mà AH là đường cao
nên AH là trung trực của BC
Gọi O là giao của AH với đường vuông góc với MN tại I
=>O nằm trên trung trực của BC
=>OB=OC
Xét ΔOMN có
OI vừa là đường cao, vừa là trung tuyến
=>ΔOMN cân tại O
=>OM=ON
Xét ΔOAB và ΔOAC có
OA chung
AB=AC
OB=OC
Do đó: ΔOAB=ΔOAC
=>góc OBA=góc OCA
Xét ΔOBM và ΔOCN có
OB=OC
BM=CN
OM=ON
Do đó: ΔOBM=ΔOCN
=>góc OBM=góc OCN
=>góc OCN=góc OCA=180/2=90 độ
=>OC vuông góc AC
=>O cố định
a: ΔABC vuông cân tại A
mà AM là đường trung tuyến
nên AM là phân giác của góc BAC
=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{90^0}{2}=45^0\)
Xét tứ giác ADME có \(\widehat{EMD}+\widehat{EAD}=90^0+90^0=180^0\)
nên ADME là tứ giác nội tiếp
=>\(\widehat{MAD}=\widehat{MED};\widehat{MDE}=\widehat{MAE}\)
mà \(\widehat{MAD}=\widehat{MAE}=45^0\)
nên \(\widehat{MED}=\widehat{MDE}=45^0\)
=>MD=ME
b: Kẻ DF\(\perp\)AB(F\(\in\)BC)
mà AC\(\perp\)AB
nên DF//AC
DF//AC
=>\(\widehat{DFB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{ABC}\)
nên \(\widehat{DFB}=\widehat{FBD}\)
=>ΔDFB cân tại D
=>DF=DB
mà DB=CK
nên DF=CK
Xét tứ giác DFKC có
DF//CK
DF=CK
Do đó: DFKC là hình bình hành
=>DK cắt FC tại trung điểm của mỗi đường
=>I là trung điểm chung của DK và FC