Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy FM = AE (1) (t/c hình chữ nhật)
Lại có; Trong hình chữ vuông ABCD, hai đường chéo đồng thời là đường p/giác các góc của hình vuông nên
^ADB = 45o (Tắt tí nhé). Tam giác FDM có một góc vuông và một góc bằng 45o nên nó vuông cân.
Do đó: FM = FD (2). Từ (1) và (2) suy ra AE = FD rồi từ đó có \(\Delta\)CDF = \(\Delta\)DAE
Suy ra DE = CF.
b) Gọi giao điểm của DE, BF là K. Ta sẽ chứng minh C, M, K thẳng hàng, từ đó suy ra đpcm.
Thật vậy:(chưa nghĩ ra... bác nào nghĩ tiếp giúp cháu-_-)
Nghĩ ra rồi!!! Nhưng ko chắc đâu, chỗ vẽ đường phụ với chứng minh ý!
b) Qua B vẽ đoạn thẳng BN // KM(3) và bằng KC (4) (N thuộc nửa mặt phẳng bờ BF có chứa C)
Có ngay \(\Delta\)BCK = \(\Delta\)CBN => NC = BK(5). Từ (4) và (5) suy ra BN // KC (6)
Từ (3) và (6) suy ra K, M, C thẳng hàng (theo tiên đề Ơclit)
Bác nào check giúp với ạ!
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông