Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
a) Dễ thấy FM = AE (1) (t/c hình chữ nhật)
Lại có; Trong hình chữ vuông ABCD, hai đường chéo đồng thời là đường p/giác các góc của hình vuông nên
^ADB = 45o (Tắt tí nhé). Tam giác FDM có một góc vuông và một góc bằng 45o nên nó vuông cân.
Do đó: FM = FD (2). Từ (1) và (2) suy ra AE = FD rồi từ đó có \(\Delta\)CDF = \(\Delta\)DAE
Suy ra DE = CF.
b) Gọi giao điểm của DE, BF là K. Ta sẽ chứng minh C, M, K thẳng hàng, từ đó suy ra đpcm.
Thật vậy:(chưa nghĩ ra... bác nào nghĩ tiếp giúp cháu-_-)
Nghĩ ra rồi!!! Nhưng ko chắc đâu, chỗ vẽ đường phụ với chứng minh ý!
b) Qua B vẽ đoạn thẳng BN // KM(3) và bằng KC (4) (N thuộc nửa mặt phẳng bờ BF có chứa C)
Có ngay \(\Delta\)BCK = \(\Delta\)CBN => NC = BK(5). Từ (4) và (5) suy ra BN // KC (6)
Từ (3) và (6) suy ra K, M, C thẳng hàng (theo tiên đề Ơclit)
Bác nào check giúp với ạ!